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In this work, a thermodynamically consistent gradient formulation for partially saturated
cohesive-frictional porous media is proposed. The constitutive model includes a classical
or local hardening law and a softening formulation with state parameters of non-local char-
acter based on gradient theory. Internal characteristic length in softening regime accounts
for the strong shear band width sensitivity of partially saturated porous media regarding
both governing stress state and hydraulic conditions. In this way the variation of the tran-
sition point (TP) of brittle-ductile failure mode can be realistically described depending on
current confinement condition and saturation level. After describing the thermodynami-
cally consistent gradient theory the paper focuses on its extension to the case of partially
saturated porous media and, moreover, on the formulation of the gradient-based charac-
teristic length in terms of stress and hydraulic conditions. Then the localization indicator
for discontinuous bifurcation is formulated for both drained and undrained conditions.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanic of porous media constitutes a discipline of great relevance in several knowledge areas like Geophysics, Bio-
mechanics and Materials Science. Its main aim is the description of the kinematic and pore pressure of porous continua when
subjected to arbitrary mechanical and/or physical actions. The definitive advantages of porous mechanics to macroscopically
describe or predict complex response behavior of cohesive-frictional materials based on fundamental aspects of their micro-
structure while accounting for the hydraulic properties and their influence in the resulting failure mechanism were recog-
nized by several authors in the scientific community (Bary et al., 2000; Borja, 2004; Ito, 2008). Consequently, a tendency to
replace the theoretical framework of classical continuum mechanics with that of non-linear porous mechanics was observed.
Firstly this process took place in case of soil mechanics, (see a.o. Ehlers et al., 2004; Coussy and Monteiro, 2007), but subse-
quently in the field of concrete, (see a.o. Ulm et al., 2004; Pesavento et al., 2008) and, furthermore, of biomaterials, (see a.o.
Naili et al., 1989; Pierre et al., 2008).

A relevant aspect of failure processes in cohesive-frictional materials is the transition from brittle to ductile response. In
the realm of classical non-porous smeared-crack-based continua (NPSC), the concept of discontinuous bifurcation by means
of the so-called localization indication (see a.o. Etse, 1994a; Jirásek and Rolshoven, 2009) gave the mathematically founda-
tion to distinguish between diffuse and localized or brittle failure mode. Many proposals of constitutive models based on
NPSC used the discontinuous bifurcation approach to accurately evaluate failure modes under different stress conditions,
. All rights reserved.
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(Perić, 1990). A critical situation in this analysis is the eventual case when discontinuous bifurcation occurs in pre-peak re-
gime before peak stress. This situation may arise in cohesive-frictional materials when subjected to monotonic compressive
loading in the low confinement regime due to excessive dilatation that leads to sudden brittle failure (Etse and Willam,
1994b).

The extension of smeared-crack concept to porous media allows accounting for the influence of the saturation level in the
location of the TP in the stress space. However, the extension of discontinuous bifurcation theory to porous media is not
straightforward due to the difficulties related to the additional fields, basically gas and liquid, and their eventual jumps.
We refer here to the works by Ehlers and Blome (2003), Schrefler and Pesavento (2004), Borja (2004), Ehlers et al. (2004),
Voyiadjis et al. (2005), Schiava and Etse (2006), Hashiguchi and Tsutsumi (2007), Di Rado et al. (2009), Nicot et al. (2009).
In some of these contributions (see Voyiadjis et al., 2005; Schiava and Etse, 2006) the discontinuous bifurcation theory
was used to differentiate brittle from ductile failure modes of porous materials, following previous and similar works related
to NPSC based material formulations.

Further development in classical continuum mechanics was the extension to non-local concepts. The main aim was the
regularization of post peak response behavior regarding mesh size and element orientation in case of finite-element
analyses, based on fundamental aspects of the material microstructure, (see a.o. Svedberg and Runesson, 1997; Fleck and
Hutchinson, 2001; Etse and Vrech, 2006; Abu Al-Rub and Voyiadjis, 2006; Vrech and Etse, 2009).

In recent years significant progresses and relevant contributions were made in non-local gradient formulations for
non-porous materials. Thermodynamic frameworks were considered in the proposals of Abu Al-Rub and Voyiadjis (2006),
Abu Al-Rub et al. (2007), Polizzotto (2008, 2009a), Voyiadjis and Deliktas (2009), Gurtin and Anand (2009), Hirschberger
and Steinmann (2009), Vrech and Etse (2009). Phenomenological aspects of the considered materials at the microscopic level
of observation were taken into account in non-local gradient formulations by Polizzotto (2009b), Bardella (2010), Kuroda and
Tvergaard (2010). Objective descriptions of the gradient internal length based on crystal-plasticity concepts were due to
Bardella (2007), Kuroda and Tvergaard (2008a,b), Ertürk et al. (2009), while based on actual confining pressure in case of
quasi-brittle materials like concrete as proposed by Vrech and Etse (2009). Considerations of material anisotropy in the for-
mulation of internal variables evolution laws in case of gradient plasticity are due to Aifantis (2009), Voyiadjis et al. (2010).
Geometrical analysis of bifurcation condition in case of non-local gradient formulations as proposed by Vrech and Etse
(2005). Formulation of gradient enhanced coupled damage-plasticity material models and related finite-element implemen-
tations, see Svedberg and Runesson (1997), Liebe et al. (2001), Dorgan and Voyiadjis (2006).

Recently, non-local concepts were extended for the formulation of porous material models, see a.o. La Ragione et al.
(2008), Kamrin (2010), Muraleetharan et al. (2009). Likewise, the consideration of microscopic aspects in the formulation
of non-local constitutive theories for porous materials are due to Zhu et al. (2010), Nicot and Darve (2007), Yin et al. (2009).

In spite of the strong development of constitutive modelling for porous media there is still a need of thermodynamically
consistent theoretical frameworks. This is particularly the case of non-local models for porous materials. Thermodynamic
concepts should lead to dissipative stress formulations in hardening and softening regimes that allow non-constant descrip-
tions of the internal variables of non-local character to accurately predict the sensitivity of porous material failure behavior
to both confinement and saturation levels.

In this work the thermodynamically consistent formulation for gradient-based elastoplasticity by Vrech and Etse (2009)
that follows general thermodynamic approach by Svedberg and Runesson (1997) for non-local damage formulation is ex-
tended for porous media. Main feature of present proposal is the definition of a gradient-based characteristic length in terms
of both the governing stress and hydraulic conditions to capture the variation of the transition from brittle to ductile failure
mode of cohesive-frictional porous materials with the level of confinement pressure and saturation. The paper includes the
particularization of the proposed thermodynamically consistent gradient poroplastic theory to partially saturated soils, as
well as the formulation and evaluation of the discontinuous bifurcation condition for different hydraulic conditions.

2. Macroscopic description of porous media

Porous media are multiphase systems with interstitial voids in the grain matrix filled with water (liquid phase), water
vapor and dry air (gas phase) at microscopic level (see Fig. 1(a)).

Key argument to reconcile continuum mechanics with the intrinsic microscopic discontinuities of porous like materials
composed by several interacting phases, is to consider them as thermodynamically open continuum systems (see Fig. 1(b)).
Thus, their kinematics and deformations are referred to those of the skeleton. Contrarily to mixture theories based upon an
averaging process (Lewis and Schrefler, 1998; Coussy et al., 1998; Huang and Zhang, 2003; Mroginski et al., 2010), the rep-
resentation of porous media is made by a superposition, in time and space, of two or more continuum phases. In case of non-
saturated porous continua we recognize three phases, the skeleton, the liquid and the gaseous phases.

2.1. Stress tensors

The mechanical behavior of partially saturated porous media is usually described by the effective stress tensor r0ij, as
follows
r0ij ¼ rij � dijpw ¼ rn
ij þ sij ð1Þ



Fig. 1. Porous media description. (a) Microscopic level; (b) Macroscopic level.
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with
sij ¼ dijðpa � pwÞ ð2Þ
rn

ij ¼ rij � dijpa ð3Þ
where rij;rn
ij and sij are the total, net, and suction stress tensors, respectively, while dij is the Kronecker delta. Moreover, pa

and pw are the gas and water pore pressures, respectively. In several geotechnical problems the gas pore pressure can be con-
sidered as a constant term that equals the atmospheric pressure. In these cases the suction tensor is counterpart to the water
pore pressure, p.

2.2. Flow theory of poroplasticity

Plasticity is a property exhibited by several materials to undergo permanent strains after a complete process of loading
and unloading. Hence, poroplasticity is that property of porous media which defines their ability to undergo not only per-
manent skeleton strains, but also permanent variations in fluid mass content due to related porosity variations. To fully char-
acterize current stages of poroelastoplastic media and to describe their irreversible evolutions, internal variables such as the
plastic porosity /p or the plastic fluid mass content mp must be considered in addition to the plastic strain ep

ij, and the irre-
versible entropy density sp.

Initial, non-deformed stage with eij = 0 and m = 0, corresponds to initial values of the stress tensor r0
ij, the pore pressure p0

and absolute temperature h0.
Small strain flow rule of poroplastic materials is based on additive decompositions of internal variables into elastic and

plastic components
_eij ¼ _ee
ij þ _ep

ij

_m ¼ _me þ _mp

_s ¼ _se þ _sp

ð4Þ
For finite deformation problems the proposed theory presents some modifications, for details see Appendix A.
Both, the rate of skeleton plastic strains _ep

ij and the rate of plastic fluid mass content _mp are related to the irreversible evo-
lution of the skeleton. Thereby, the rate of plastic porosity _/p can be obtained as
_/p ¼
_mp

qfl
0

ð5Þ
with qfl
0 the initial fluid mass density.
3. Thermodynamic of local dissipative porous media

In this section some basic thermodynamic relationships for classical or local dissipative porous media are presented.

3.1. First law of the thermodynamic

Considering a body occupying the volume X, with boundary @X, the first law of the Thermodynamic can be expressed as
_Eþ _K ¼ P þ Q ð6Þ
with
E ¼
Z

X
ðqeþ pmÞdX ð7Þ
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K ¼ 1
2

Z
X
q _ui _uij jdX ð8Þ

P ¼
Z

X
qbi _uidXþ

Z
@X

rijni _ujd@X ð9Þ

Q ¼
Z

X
qrdX�

Z
@X

hinid@X ð10Þ
Here, E and K are the internal and the kinetic energy of the body, respectively, whereas P and Q represent the mechanical
and thermal supply. Moreover, e is the internal energy density (per unit mass), bi is the body force, rij is the stress, r is a heat
source density and hi is the heat flux. The displacement ui, the unit normal vector on @X, ni, and the mass density q, were also
included.

Considering the equilibrium equation, the explicit form of the internal energy density for local dissipative porous material
follows from Eq. (6) as
q _e ¼ rij _eij þ qr þ p _m� hi;i ð11Þ
3.2. Second law of the thermodynamic

According to the second law of thermodynamic (entropy inequality) the entropy S of a thermodynamic system can not
decrease. This can be expressed as
_Sþ Q h P 0 ð12Þ
with
_S ¼
Z

X
qsdX; Q h ¼

Z
X

qr
h

dX�
Z
@X

nihi

h
d@X ð13Þ
being Qh the entropy flux, and s the entropy density (per unit mass). Invoking Eq. (12) in Eq. (13) and eliminating r by com-
bining with Eq. (11), the global form of the Clausius–Duhem inequality (CDI) can be obtained as
Z

X

1
h

rij _eij þ qh_sþ p _m� q _e� hih;i
h

� �
dX P 0 ð14Þ
Introducing the Helmholtz’s free energy W = e � hse, the following expression is attained
Z
X

1
h

rij _eij þ qh_sþ p _m� q _Wþ h_se þ _hse
� �

� hih;i
h

� �
dX P 0 ð15Þ
4. Thermodynamically consistent gradient poroplasticity with non-local effects limited to the state variables

The thermodynamic framework of classical or local plasticity is extended to non-local gradient-based elastoplastic porous
material.

Following Simo and Miehe (1992) we assume that arbitrary thermodynamic states of the dissipative material during iso-
thermal processes are completely determined by the elastic strain ee

ij ¼ eij � ep
ij, the elastic entropy se = s � sp and the internal

variables qa with a = s, p for solid or porous phase, which are considered here as scalar variables. Isothermal condition means
that h and s become irrelevant quantities, i.e. the elastic entropy se does not need to be included as an additional argument of
the thermodynamic state. When considering poroplastic materials the elastic mass content me = m �mp needs also to be in-
cluded as a thermodynamic argument, see Coussy (1995). Based on Svedberg and Runesson (1997) and Vrech and Etse
(2009) we further assume that the internal variables qa, (qs and qp), are the only ones of non-local character. The extension
to more than two scalar internal variables is straightforward. Hence, both qa and qa,i will appear as arguments in e or, more-
over, in W, such that
W ¼ W ee
ij;m

e; qa; qa;i

� �
ð16Þ
Note that by restricting non-local effects to the state variables the energy balance in Eq. (11) remains unchanged. This is
because the strain rate tensor remains local and the energy density is not expressed in terms of its arguments that involve
non-local effects through internal variables, like in Eq. (16).

Upon differentiation of Eq. (16) and combining with Eq. (15), under consideration of Eq. (4),
Z
X

rij � q@ee
ij
W

� �
_eij þ p� q@me Wð Þ _mþ q@ee

ij
W _ep

ij þ q@me W _mp �
X

a
q@qaW _qa �

X
a

q@qa;i W _qa;i

" #
dX P 0 ð17Þ
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and integrating the gradient term by parts, it follows
Z
X

rij � q@ee
ij
W

� �
_eij þ p� q@me Wð Þ _mþ q@ee

ij
W _ep

ij þ q@me W _mp �
X
a

q@qaW _qa �
X

a
q@qa;iW
� �

;i
_qa

" #
dX

�
Z
@X

q
X

a
ni@qa;iW _qad@X P 0 ð18Þ
where the following compact notation for partial derivative was adopted, @xF ¼ @F
@x. On the above equation, the Divergence

Theorem was applied being ni the (outward) unit normal to @X.
Then, the dissipative stress in the domain X and on the boundary @X are defined as Qa and Q ðbÞa , respectively
Qa ¼ �q@qaWþ ðq@qa;iWÞ;i in X ð19Þ

Q ðbÞa ¼ �q@qa;iWni on @X ð20Þ
and the Eq. (18) can be expressed as
Z
X

rij � q@ee
ij
W

� �
_eij þ p� q@meWð Þ _mþ q@ee

ij
W _ep

ij þ q@me W _mp þ
X

a
Qa _qa

" #
dXþ

Z
@X

X
a

Q ðbÞa _qad@X P 0 ð21Þ
In standard form (as for local theory), it is postulated that the last inequality must hold for any choice of domain X and for
any independent thermodynamic process. As a result, Coleman’s equation are formally obtained like for the local continuum
theory
rij ¼ q@ee
ij
W ð22Þ

p ¼ q@me W ð23Þ

D ¼ rij _ep
ij þ p _mp þ

X
a

Qa _qa P 0 in X ð24Þ

DðbÞ ¼
X

a
Q ðbÞa _qa P 0 on @X ð25Þ
In the particular case of non-porous material (p = 0) above equations takes similar form to those obtained by Svedberg
and Runesson (1997) and Vrech and Etse (2009) for isothermal situations.

From the above equations, (24) and (25) it can be concluded that the difference between this non-local theory and the
local one is the additional gradient term in the expression of the dissipative stresses Qa, and the boundary dissipation term
Q ðbÞa . Consequently, the dissipative stress Qa can be decomposed into the local and non-local components
Qa ¼ Qloc
a þ Q nloc

a ð26Þ
with
Qloc
a ¼ �q@qaW ð27Þ

Qnloc
a ¼ q@qa;iW

� �
;i

ð28Þ
Remark 1. While the global inequality in Eq. (21) is necessary in order to satisfy the CDI, the inequalities Eqs. (24) and (25)
are only sufficient conditions.

It is interesting to compare the rate of dissipation expression in Eq. (18), when non-porous media are considered, with
that corresponding to the unified treatment of thermodynamically consistent gradient plasticity by Gudmundson (2004).
When applying integration by parts, followed by the Divergence Theorem, to the gradient terms of the rate of dissipation,
see Eq. (7) of Gudmundson (2004), this formulation leads to dissipative non-local stresses on the boundary, similar to the
present proposal when particularized to non-porous media.

However, a relevant difference between Gudmundson formulation and the present one is that the free energy density in
the first one is expressed as function of the elastic strain, plastic strain, and plastic strain gradient tensors. Consequently, the
dissipation includes the differences between the rate of change of the free energy with respect to the plastic strains and plas-
tic strain gradients, on the one hand, and the internal stresses conjugated to both kinematic fields, on the other hand. These
internal stresses are denoted by Gudmundson as microstresses and moment stresses, respectively. In the present formula-
tion, and based on Svedberg and Runesson (1997) and Vrech and Etse (2009), the free energy density is expressed in terms of
the elastic strains, the internal variables and their gradients (being the only ones of non-local character). So, the rate of dis-
sipation in Eq. (18) does not include the so-called microstresses and moment stresses.
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The convex set b of plastically admissible states can then be defined as
b ¼ fðrij; p;QaÞjUðrij;p;QaÞ 6 0g ð29Þ
where U(rij,p,Qa) is the convex yield function.

4.1. Thermodynamically consistent constitutive relations

Based on previous works (Svedberg and Runesson, 1997; Vrech and Etse, 2009), the following additive expression of the
free energy corresponding to non-local gradient poroplastic materials is adopted
W ee
ij;m

e; qa; qa;i

� �
¼ Weðee

ij;m
eÞ þWp;locðqaÞ þWp;nlocðqa;iÞ ð30Þ
whereby We is the elastic energy of the porous media defined by Coussy (1995) as
qWe ¼ r0
ije

e
ij þ p0 me

qfl
0

þ 3amhM
me

qfl
0

þ 1
2
ee

ijC
0
ijkle

e
kl þ

1
2

M Bijee
ij �

me

qfl
0

 !2

ð31Þ
Whereas Wp,loc and Wp,nloc are the local and non-local gradient contributions due to dissipative hardening/softening
behaviors, which are expressed in terms of the internal variables qa and their gradient qa,i, respectively.

Once the Coleman’s relations are deduced from Eqs. (22) and (23), neglecting initial stress and pressures, the following
expressions can be obtained
rij ¼ Cijklee
kl �MBij

me

qfl
0

ð32Þ

p ¼ �MBijee
ij þM

me

qfl
0

ð33Þ
being M the Biot’s module, Bij = bdij with b the Boit coefficient, and Cijkl ¼ C0
ijkl þMBijBkl, whereby C0

ijkl is the fourth-order elas-
tic tensor which linearly relates stress and strain.

4.2. Non-local plastic flow rule

Rate equations for the internal variables are introduced in the same way as for local theory. Hence, for general non-
associative flow and hardening rule, we introduce the dissipative potential U* such that
_ep
ij ¼ _k@rij

U�; _mp ¼ _k@pU
�; _qa ¼ _k@QaU

� ð34Þ
To complete problem formulation in X, the Kuhn–Tucker complementary conditions are introduced as follow
_k P 0; Uðrij;p;QaÞ 6 0; _kUðrij; p;QaÞ ¼ 0 ð35Þ
4.3. Rate form of constitutive equations

In the undrained condition and considering the additive decomposition of the free energy potential in Eq. (30) and the
flow rule of Eq. (34), the following rate expressions of the stress tensor _rij and pore pressure _p are obtained from Eqs.
(32) and (33)
_rij ¼ Cijkl _ekl � Cijkl
_k@rkl

U� �MBij
_m

qfl
0

þMBij
_k@pU

� ð36Þ

_p ¼ �MBij _eij þMBij
_k@rij

U� þM
_m

qfl
0

�M _k@pU
� ð37Þ
After multiplying Eq. (37) by Bij and combining with Eq. (36), a more suitable expression of the rate of the stress tensor for
drained condition is achieved
_rij ¼ C0
ijkl

_ekl � Bij _p� C0
ijkl@rkl

U� _k ð38Þ
while the evolution law of the local and non-local dissipative stress in Eq. (26) results
_Qa ¼ _Qloc
a þ _Q nloc

a ð39Þ
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with
_Qloc
a ¼ � _kHloc

a @QaU
� ð40Þ

_Qnloc
a ¼ l2

a Hnloc
aij

_k;j@QaU
� þ _kHnloc

aij Qa;j@
2
QaQa

U�
� �

;i
ð41Þ
Thereby, local hardening/softening module Hloc
a have been introduced as well as the new non-local hardening/softening

tensor Hnloc
aij as defined in Svedberg and Runesson (1997)
Hloc
a ¼ q@2

qaqa
Wp;loc; Hnloc

aij ¼ q
1

l2
a

@2
qa;iqa;j

Wp;nloc ð42Þ
Hnloc
aij is a second order positive defined tensor. For the characteristic length la three alternative definitions can be given, see

Pamin (1994), Svedberg (1999), Vrech and Etse (2005). On the one hand, it can be defined as a convenient dimensional
parameter so as Hloc

a and Hnloc
aij will get the same dimension. On the other hand, as a physical entity that characterizes the

material microstructure. Alternatively, la can be interpreted as an artificial numerical stabilization mechanism for the
non-local theory.

4.4. Differential equation for the plastic multiplier

The complementary Kuhn–Tucker condition in Eq. (35) together with the plastic consistency condition, leads to
_U ¼ @rij
U _rij þ @pU _pþ @QaU _Qa ¼ 0 ð43Þ
From Eqs. (36), (37) and (39), the following differential equation for undrained condition can be obtained
_U ¼ _k �@rij
UCijkl@rkl

U� þM@rij
UBij@pU

� þM@pUBij@rij
U� �M@pU@pU

� � Hloc
a @QaU@QaU

�
h i
þ @rij

UCijkl �M@pUBkl

� �
_ekl þ M@pU� @rij

UBij

� �
_m=qfl

0 þ @QaU l2
a Hnloc

aij
_k;j@QaU

� þ _kHnloc
aij Qa;j@

2
QaQa

U�
� �

;i

� �
¼ 0 ð44Þ
And also, a more suitable differential equation for the drained condition can be obtained when Eq. (38) instead of Eq. (36) is
combined with Eqs. (37) and (39).
_U ¼ _k �@rij
UC0

ijkl@rkl
U� � Hloc

a @QaU@QaU
�

h i
þ @rij

UC0
ijkl

_ekl þ @pU� @rij
UBij

� �
_p

þ @QaU l2
a Hnloc

aij
_k;j@QaU

� þ _kHnloc
aij Qa;j@

2
QaQa

U�
� �

;i

� �
¼ 0 ð45Þ
For the sake of clarity last equation is rewritten in compacted form
� _Unloc þ ðhþ hnlocÞ _k ¼ _Ue � _U ð46Þ
where _Ue is the local loading function, h the generalized plastic modulus, hnloc the gradient plastic modulus, and _Unloc the
gradient loading function defined as
_Unloc ¼ l2a@QaU @QaU
� Hnloc

aij
_k;ij þ Hnloc

aij;j
_k;i

h i
þ 2@2

QaQa
U�Qa;iH

nloc
aij

_k;j
n o

ð47Þ

hnloc ¼ �l2
a@QaU @2

QaQa
U� Hnloc

aij Qa;ij þ Hnloc
aij;j Qa;i

h i
þ @3

QaQaQa
U�Qa;iH

nloc
aij Qa;j

n o
ð48Þ
Both, the local yield function and the generalized plastic modulus can be decomposed into the components ð _Ue
s ;hsÞ and

( _Ue
p and hp) related to the soil skeleton and to the porous, respectively. This decomposition is valid for undrained and drained

conditions.
_Ue ¼ _Ue
s þ _Ue

p ð49Þ
h ¼ hs þ hp þ H ð50Þ
with
H ¼ Hloc
a @QaU@QaU

� ð51Þ
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where, for drained condition, it can be obtained
_Ue;d
s ¼ @rij

UC0
ijkl

_ekl ð52Þ

_Ue;d
p ¼ @pU� @rij

UBij

� �
_p ð53Þ

hd
s ¼ @rij

UC0
ijkl@rkl

U� ð54Þ

hd
p ¼ 0 ð55Þ
while for undrained condition
_Ue;u
s ¼ @rij

UCijkl _ekl �M@pUBij _eij ð56Þ

_Ue;u
p ¼

_m

qfl
0

M@pU� @rij
UBij

� �
ð57Þ

hu
s ¼ @rij

UCijkl@rkl
U� ð58Þ

hu
p ¼ �M @rij

UBij@pU
� þ @pUBij@rij

U� � @pU@pU
�

� �
ð59Þ
When all state variables are spatially homogeneous, it can be assumed that @2
QaQa

U� ¼ 0 (Svedberg and Runesson, 1997).
Thereby
hnloc ¼ 0 and _Unloc ¼ l2
a@QaU@QaU

�Hnloc
aij

_k;ij ð60Þ
and the pertinent differential equation to evaluate _k in this particular case results
� _Unloc þ h _k ¼ _Ue � _U ð61Þ
4.5. Gradient form of elastoplastic constitutive equations

Under consideration of plastic loading, the plastic multiplier can be easily determined from Eq. (61). Replacing it in the
constitutive equations Eqs. (36) and (38) for drained and undrained porous media, respectively, leads to
_rij ¼ C0
ijkl

_ekl � Bij _p� C0
ijkl@rkl

U�ð _Ue þ _UnlocÞ=h ð62Þ

_rij ¼ Cijkl _ekl �MBij _m=qfl
0 þ MBij@pU

� � Cijkl@rkl
U�

� 	
_Ue þ _Unloc

� �
=h ð63Þ
Taking into account the definitions of _Ue and _Unloc in the above equations results
_rij ¼ Eep;sd
ijkl

_ekl þ Eep;pd
ij

_p� Eg;spd
ij

_f g ð64Þ
_rij ¼ Eep;su

ijkl
_ekl þ Eep;pu

ij
_m=qfl

0 � Eg;spu
ij

_f g ð65Þ
being Eep,s and Eep,p the elastoplastic operators of the solid skeleton and porous phase, respectively, and Eg,sp the continuum
gradient-elastoplastic tensor of both constituents. The superscript d or u indicates the considered hydraulic condition,
drained or undrained, respectively. For more details see Appendix B.
5. Instability analysis in the form of discontinuous bifurcation

In this section the discontinuous bifurcation analysis for local and non-local porous media will be treated.

5.1. Discontinuous bifurcation analysis in local porous media

It has been widely accepted that when dissipative constitutive models of quasi-brittle and ductile materials are subjected
to monotonic loading in the inelastic regime, they may exhibit spatial discontinuities of the kinematic fields (Hill, 1962;
Rudnicki and Rice, 1975) depending on the particular boundary condition but also on the degree of non-associative, water
content, inhomogeneities, etc. The occurence of these discontinuities is related to the so-called localized failure mode.

In case of non-porous constitutive theories, different authors performed numerical and theoretical analyses to obtain
model predictions of localized failure modes in the form of discontinuous bifurcation (see a.o. Etse and Willam, 1994b;
Pamin, 1994; Carosio et al., 2000; Fleck and Hutchinson, 2001; Voyiadjis et al., 2005; Jirásek and Rolshoven, 2009).

In case of porous media, localization analysis should not be restricted to the consideration of discontinuities taking place
only in the solid phase (see Benallal and Comi, 2002; Borja, 2004; Schiava and Etse, 2006). Contrarily, discontinuities may
develop in all different phases during monotonic loading and/or changes in the humidity conditions of porous media. From
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the mathematic stand point this assumption means that both the field of velocity gradients and the rate of fluid mass content
are discontinuous and their jumps are defined as
½½ _eij�� ¼ 1=2ðginj þ nigjÞ ð66Þ

½½ _m�� ¼ �½½Mi;i�� ¼ �nigM
i ð67Þ
Applying Hadamard relation (Hadamard, 1903; Coussy, 1995) to the tensors of zero and first order, p and rij, respectively,
the following balance equations are obtained
c½½p;i�� þ ½½ _p��ni ¼ 0 ð68Þ

c½½rij;j�� þ ½½ _rij��nj ¼ 0 ð69Þ
5.1.1. Drained state
In drained state instability analysis is restricted to the solid skeleton. The fluid flow in deformable porous media is gov-

erned by the Darcy’s law. Thus, neglecting inertial forces, the relative flow vector of fluid mass Mi is then expressed as
Mi ¼ �qflkijp;j ð70Þ
where kij is the permeability tensor of porous media. During quasi-static loading the fluid subjected to strong pressure gra-
dients may exhibit a spontaneous diffusion process, with very fast pressure degradation. Thereby, the relative flow vector of
fluid mass should remain continuous. Then, from Eq. (70) follows
½½Mi�� ¼ �qflkij½½p;j�� ¼ 0 ð71Þ
The last expression leads to the conclusion that pore pressure gradient does not present discontinuities [[p,i]] = 0. Thus,
Eq. (68) can only be fulfilled if the rate of pore pressure remains continuous, i.e. ½½ _p�� ¼ 0.

Considering the momentum balance equation for quasi-static problems, applying the jump operator to the incremental
constitutive equation, Eq. (64), and substituting the resulting expression into Eq. (69), we obtain
½½ _rij��nj ¼ Eep;sd
ijkl ½½ _ekl��nj ¼ 0 ð72Þ
being Eep;sd
ijkl the solid skeleton elastoplastic tensor, as described in Section 4.5. Introducing Eq. (66) in Eq. (72) results
½½ _rij��nj ¼ Ad;loc
ij gj ¼ 0 ð73Þ
where the elastoplastic acoustic tensor for local plasticity in porous media under drained condition is decomposed in its elas-
tic, Ae;s

ij , and elastoplastic parts, Aep;s
ij , as
Ad;loc
ij ¼ Eep;sd

ijkl nlnk ¼ Ae;s
ij � Aep;s

ij ð74Þ
being
Ae;s
ij ¼ C0

ijklnlnk

Aep;s
ij ¼

C0
ijmn@rmn U�@rpq UC0

pqkl

h nlnk

ð75Þ
Since trivial solutions are out of interest, the spectral properties of the local acoustic tensor Ad;loc
ij , must be analyzed. Then,

the localization condition of drained porous media is achieved as
detðAd;loc
ij Þ ¼ 0 ð76Þ
As porous effects has been neglected the discontinuity related to the above bifurcation condition affects only the strain
velocity field. Consequently, the localization tensor in fully drained condition takes the same form as in classical elastoplastic
continua.

It can be then concluded that the localization condition in Eq. (76) involves only the drained poroelastic properties. The
fluid pressure is only concerned in the localization phenomenon through its potential influence on the current values of both
the loading function U and the generalized plastic modulus h.

5.1.2. Undrained state
In undrained state the variation of fluid mass content in the solid skeleton vanishes, _m ¼ 0. The pore pressure can be

obtained from the solid phase kinematics, gi � gM
i .

Applying the jump operator to Eqs. (65) and (66),
½½ _rij��nj ¼ Au;loc
ij gj ¼ 0 ð77Þ
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where, as well as the section before, the elastoplastic acoustic tensor for local plasticity under undrained condition is decom-
posed in its elastic part referred to the solid phase, Ae;s

ij , the elastic part referred to the porous phase, Ae;p
ij , and elastoplastic

parts referred to both phase, Aep;sp
ij , as
Au;loc
ij ¼ Eep;su

ijkl nlnk ¼ Ae;s
ij þ Ae;p

ij � Aep;sp
ij ð78Þ
being
Ae;p
ij ¼ MBijBklnlnk

Aep;sp
ij ¼

Cijmn@rmnU
�@rpqUCpqkl

h
þM

h
M@pU

�BijBkl@pU� Cijmn@rmnU
�Bkl@pU� @pU

�BijCklmn@rmn U
� 	� �

nlnk ð79Þ
The localization condition follows from the spectral properties analysis of the acoustic tensor
detðAu;loc
ij Þ ¼ 0 ð80Þ
From the comparison between Eqs. (76) and (80) it can be concluded that the hydraulic border conditions affect the solid–
fluid coupled matrix.

5.2. Bifurcation analysis in non-local gradient-based porous media

In the previous section the discontinuous bifurcation problem of local porous medium has been studied. The aforemen-
tioned analysis is hold in case of brittle failure modes. This is the case of some cementitious sandy soils cemented with iron
oxide (so-called Sandstone) as well as concrete in tensile or uniaxial compression states. In these situations strain localiza-
tion is generated in a region of null thickness la = 0.

In case of quasi-brittle and, moreover, ductile failure modes, shear bands or microcracking zones of non-zero thicknesses
develop during failure processes. This is typically the case of cementitious and granular materials under triaxial compression
with medium or high confinements, and of metals. The size of finite localization zones that develop during failure processes
of quasi-brittle and ductile materials are defined by the so-called characteristic length la – 0 (Pamin, 1994; Voyiadjis et al.,
2005; Vrech and Etse, 2005).

In the following the conditions for the occurrence of localized failure modes in the form of discontinuous bifurcation in
non-local gradient elastoplastic porous media are analyzed. It is assumed homogeneous fields of stress and strain rates just
before the onset of localization. Contrarily to the case of local poroplastic media discussed in the previous section, the plastic
consistency, see Eq. (61), is now a function of both the plastic multiplier _k, and its second gradient _k;ij.

The jump operator of the current stress on the discontinuity surface should satisfy the equilibrium equation
_rij;j ¼ 0 ð81Þ
where the incremental stress tensor is defined by Eq. (36) or Eq. (38), depending on the assumed hydraulic border
conditions.

To investigate the stability of an equilibrium state the loss of ellipticity is commonly investigated by a wave propagation
analysis (Abellan and de Borst, 2006; Tsagrakis et al., 2003; Benallal and Comi, 2002; Liebe et al., 2001; Svedberg and
Runesson, 1997). Thus, considering a homogeneous state before the onset of localization the following harmonic perturba-
tion with respect to the incremental field variables, i.e. displacements, mass content and plastic multiplier, for an infinite
porous medium is assumed, which corresponds to the assumption of stationary planar waves
_uðx; tÞ
_cðx; tÞ
_kðx; tÞ

264
375 ¼ _UðtÞ

_MðtÞ
_LðtÞ

264
375 exp

i2p
d

n � x
� �

ð82Þ
being _c the mass content, x the position vector (in Cartesian coordinates), n the wave normal direction and d the wave length.
Moreover _U ; _M and _L are spatially homogeneous amplitude of the wave solutions.

Replacing Eq. (82) in Eqs. (61), (81) and, (36) or Eq. (38) (depending on the assumed hydraulic conditions), that represent
the differential expression of plastic consistency, the equilibrium condition, and the incremental constitutive relations,
respectively, follows that the equilibrium condition on the discontinuity surface is fulfill if
2p
d

� �2

C0
ijkl �

C0
ijmn@rmnU

�@rpqUC0
pqkl

hþ �hnloc

( )
nlnk

_U ¼ 0 ð83Þ
in case of drained conditions, and
2p
d

� �2

Cijkl �
Cijmn@rmnU

�@rpqUCpqkl

hþ �hnloc
�M2 @pU

�BijBkl@pU

hþ �hnloc
þM

Cijmn@rmn U
�Bkl@pU

hþ �hnloc
þ @pU

�BijCmnkl@rmnU

hþ �hnloc

� �
 �
nlnk

_U ¼ 0

ð84Þ
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in the undrained case, being �hnloc the generalized gradient modulus as
�hnloc ¼ l2
a @QaU@QaU

�Hnloc
a ij

� �
njni

2p
d

� �2

ð85Þ
The expressions between brackets on Eqs. (83) and (84) correspond to the localization acoustic tensor for porous media
under drained and undrained conditions Ad;nloc

ij y Au;nloc
ij , respectively. From the comparison between the bifurcation analysis

carried out for local, and non-local porous media, Eqs. (76), (80) and Eqs. (83), (84), respectively, follows that the difference
between both lies only in the generalized (non-local) gradient modulus �hnloc. Precisely the effect of �hnloc at the finite-element
level is the regularization of the post peak regime.
6. Numerical analysis

In this section some numerical results are presented to illustrate the regularization capabilities of the non-local gradient
poroplastic formulation in this paper.

Plane strain condition is assumed while the modified Cam Clay criterion for saturated porous media (Borja, 2004) based
on non-associated flow rule is considered in the analysis. The resulting yield condition is defined as
U r; s;p;Qað Þ ¼ rþ bpþ 1
2

Qa

� �2

þ s
M

� �2
� 1

4
Q 2

a ð86Þ
where r = I1/3 is the Cauchy hidrostatic stress, s ¼
ffiffiffiffiffiffiffi
3J2

p
the shear stress, M the slope of the Critical State Line and Qa the

dissipative stress defined in Eq. (26).
The thermodynamic consistency enforces the definition of the local and non-local plastic portions of the free energy Eq.

(30),
Wp j;j;i
� 	

¼ Wp;loc jð Þ þWp;nloc j;i
� 	

¼ � 1
vp0

co exp vjð Þ � 1
2

l2
aHnloc

a j;i

� �
;i

ð87Þ
whereby the corresponding internal variable j of the Cam Clay model is the total plastic volumetric deformation ep, which is
a function of the plastic porosity /p and the plastic volumetric deformation of the skeleton, ep

s (Coussy, 1995)
ep ¼ /p þ ð1� /0Þep
s ð88Þ
Then, the dissipative stress can be obtained by Eq. (26)
QlocðjÞ ¼ ð2� /0Þp0
co expðvð/p þ ð1� /0Þep

s ÞÞ ð89Þ
Qnlocðj;iÞ ¼ l2

s Hnloc
s r2ep

s þ l2
pHnloc

p r2/p ð90Þ
where ls and lp are the internal characteristic lengths of the solid and porous phases, respectively.
In Fig. 2 the localization condition corresponding to both classical and gradient poroplastic formulations at maximum

strength capacity of the modified Cam Clay poroplastic material under different confinement levels is depicted for all pos-
sible loading directions. The results of the localization analysis presented in Fig. 2 indicate that the gradient dependent Cam
Clay elastoplastic formulation that results from the proposed theory in this paper is able to suppress the potential discon-
tinuous bifurcations of the local poroplastic material and, consequently, to regularize the post peak behavior.
Fig. 2. Localization condition plots in polar coordinated system. (a) Classical-plasticity model; (b) Gradient-plasticity model.
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7. Conclusions

In this work a general thermodynamically consistent gradient constitutive formulation to describe non-local behavior of
porous media is proposed. The proposal is an extension of the gradient-based thermodynamically consistent theories by
Svedberg and Runesson (1997) and Vrech and Etse (2009) for non-porous continua. Porous materials in this work are mod-
elled from the macroscopic level of observation. They are considered to defined open thermodynamic systems characterized
by the presence of occluded sub regions.

Discontinuous bifurcation theory to predict localized failure modes is consistently extended to porous media. As a result,
the analytical expression of the localization tensor for gradient regularized plasticity in porous media is obtained. This failure
indicator is particularized for both drained and undrained hydraulic conditions.

The thermodynamically constitutive theory and related localization indicator in this work can be applied to the analysis
of failure behavior of different types of porous materials like soils, bones and concrete.

Acknowledgements

The authors acknowledge the financial support for this work by CONICET (National Council for Science and Technology)
through Grant No. PIP 112-200801-00707 and by the University of Tucuman, Argentine, through Grant No. E26/455.

Appendix A. Finite deformation

The present theory was developed under small deformations hypothesis nevertheless it can be easily adapted to finite
deformations problems using the concept of corrotational magnitudes (Belytschko et al., 2000; Polizzotto, 2009b). The gra-
dient-plasticity treatment in terms of corrotational magnitudes does not present much complexity since all state variables
are objectively described in the corrotational configuration. In contrast, this kind of corrotational-based constitutive models
leads to a somewhat awkward in numerical implementation due to the appearance of non-symmetric matrices and defor-
mation-dependent constitutive tensors. However the non-symmetrical part of those constitutive models mainly depends on
tangential stress and could be disregarded, in some cases (Di Rado et al., 2008).

As we said before, finite deformation problems require an objectivity description of the state variables. Namely, the strain
tensor employed should be indifferent under rigid body motions in order to avoid the appearance of unreal stress. The infin-
itesimal strain tensor e does not fulfill this postulate and is it mandatory to be replaced by another strain tensor. An appro-
priated strain measure is the spatial rate of deformation tensor D which is the symmetric part of the additively
decomposition of the spatial velocity gradient L, being its W the antisymmetric part,
L ¼ DþW ¼ _F � F�1 ¼ Le þ Fe � Lp � Fe�1 ðA:1Þ
with Le ¼ _Fe � Fe�1
and Lp ¼ _Fp � Fp�1

The basic hypothesis in physical and geometrical non-lineal problem analysis is the multiplicative decomposition of the
deformation gradient tensor in its elastic and plastic parts, Fe, Fp, respectively.
F ¼ Fe � Fp ðA:2Þ
On the other hand, the spatial rate of deformation tensor can be expressed in a convenient form considering the relation
between the deformation gradient tensor and the rate of the Green–Lagrange strain tensor, _E, in the following way
D ¼ F�T � _E � F�1 ðA:3Þ
with
_E ¼ FpT
Ee
�
þ1

2
LprT � Ce þ Ce � Lpr
� �� �

Fp ðA:4Þ
being Ee
�
¼ _Ee �xEe þ Eex; Lpr ¼ Lp �x; Ce ¼ FeT � Fe ¼ Iþ 2Ee and x ¼ _RRT

Likewise, considering the relationship between the second Piola–Kirchhoff stress tensor S, and the Cauchy stress tensor r,
S ¼
�q
q

Fe�1 � r � Fe�T ðA:5Þ
it is possible rewrite the second principle of the thermodynamic Eq. (15) for isothermal condition
Z
X

q
�q

Fe � S � FeT
: F�T � _E � F�1 þ p _m� q _W

� �
dX P 0 ðA:6Þ
In this gradient plasticity framework, considering corrotational magnitudes, the free energy of Helmholtz can be decom-
posed in the following way
W ¼ WeðbEe;meÞ þWp;locðqaÞ þWp;nlocðr̂qaÞ ðA:7Þ
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where the operator �̂ ¼ RT � � � R implies a configuration change for the magnitude �passing from the reference, C, to the cor-
rotated configuration,bC . Note that me and qa are considered here as scalar quantities, thus they are indifferent under rigid
body motions.

Replacing the rate of the free energy in Eq. (A.6) and considering Eq. (A.4) it is possible to proceed in a similar way to Eq.
(17), then
Z

X

q
�q

S� qRT@ bEe
WR

� �
Ee
�
þ p� q@me Wð Þ _mþ q

2�q
S � LprT � Ce þ Ce � Lpr
� �

þ q@me W _mp þ
X

a
Q a _qa

" #
dX

þ
Z
@X

X
a

Q ðbÞa _qad@X P 0 ðA:8Þ
with
Q a ¼ �q@qaW�r � qRT@r̂qa
W

� �
in X ðA:9Þ

Q ðbÞa ¼ �qn@r̂qa
W in @X ðA:10Þ
Since the inequality (A.8) holds for arbitrary elastic–plastic deformation mechanisms, even when these are purely elastic,
all plastic strain variable disappears (Polizzotto, 2009b), and inequality(A.8) implies
S ¼ �qRT@ bEe
WR ¼ �q@EeW p ¼ q@me W ðA:11Þ
which are the pertinent elasticity laws and the dissipation expression in the domain X and on the boundary @X are formally
obtained as
D ¼ 1
2�q

S � LprT � Ce þ Ce � Lpr
� �

þ p _mp þ
X

a
Q a _qa P 0 in X ðA:12Þ

DðbÞ ¼
X

a
Q ðbÞa _qa P 0 on @X ðA:13Þ
Appendix B. Matrix expressions of Eq. (64)

The matrix expressions of the gradient-plasticity constitutive relationship of Eq. (64) with drained conditions are
Eep;sd
ijkl ¼ C0

ijkl �
C0

ijmn@rmnU
�@rpqUC0

pqkl

h
ðB:1Þ

Eep;pd
ij ¼ �Bij �

C0
ijkl@rkl

U� @pU� @rmnUBmn
� 	

h
_p ðB:2Þ

Eg;spd
ij ¼

C0
ijkl@rkl

U�

h
ðB:3Þ

_f g ¼ l2
a@QaU@QaU

�Hnloc
aij

_k;ij ðB:4Þ
In the same way, the matrix expressions of the gradient-plasticity constitutive relationship of Eq. (65) with undrained
conditions are presented here as
Eep;su
ijkl ¼ Cijkl �

Cijmn@rmnU
�@rpqUCpqkl

h
�M2 @pU

�BijBkl@pU
h

þM
Cijmn@rmnU

�Bkl@pU
h

þ @pU
�BijCmnkl@rmnU

h

� �
ðB:5Þ

Eep;pu
ij ¼ �M Bij �

@pU
�Bij M@pU� @rmnUBmn
� 	

h

� �
�

Cijkl@rkl
U� M@pU� @rmnUBmn
� 	

h
ðB:6Þ

Eg;spu
ij ¼ Cijkl@rkl

U� �MBij@pU
�

h
ðB:7Þ

_f g ¼ l2
a@QaU@QaU

�Hnloc
aij

_k;ij ðB:8Þ
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