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Abstract. A fracture energy-based microplane constitutive theory for steel fiber re-
inforced concrete (SFRC) is presented to evaluate the properties of the discontinuous
bifurcation condition under different scenarios of stress states, fiber contents and direc-
tions. The constitutive model considers a CAP-cone yield surface of C1 continuity at the
microplane level. Its evolution in the post-peak regime is described by means of a fracture
energy-based work softening which is defined differently for mode I and II type of failure.
The effect on the post-peak ductility introduced by the fiber content is also taken into
account, while the directional properties of the steel fibers are considered through the
relative directions between microplanes and fibers.

The main objective of the discontinuous bifurcation analysis proposed in this work, is
to evaluate the capabilities of the microplane theory to capture the directional enrichment
provided by steel fibers to the ductility and also, to reproduce the particular microcrack
directions which (in the framework of the smeared crack approach) are mathematically
represented by the spectral properties of the critical localization tensor. Firstly, the
localized failure features in the form of discontinuous bifurcation of SFRC are identified by
means of numerical analysis. Mono- and multidirectional fiber distributions and different
steel fiber contents are considered in the localized failure analysis to be performed on
stress states corresponding to critical strengths of SFRC under both uniaxial and biaxial
tension and compression. Then, microplane model are compared with the FE predictions
obtained with the interface model for FRC previously proposed by the authors. In the
last case, the crack evolutions and their directions are explicitly described throughout the
so-called discrete crack approach.

1

249



Sonia M. Vrech, Antonio Caggiano and Guillermo Etse

1 INTRODUCTION

Localized failure mechanisms on quasi-brittle materials, understood as the formation
of restricted failure zones with high concentration of deformations while the rest of the
structure might even exhibit unloading, depend on their acting stresses as well as the
mechanical and chemical features which they are submitted and have experimentally
been observed by a. o. [1, 2].

While the localization of deformations in terms of discontinuous bifurcation for plain
concrete has extensively been studied, see a.o. [3, 4], there are not yet similar analysis
related to fiber reinforced concrete (FRC). In this case it becomes necessary to distinguish
failure mechanisms that characterize tension, compression and shear regimes regarding
different fiber contents as well as fiber directions.

In this work, a novel constitutive formulation for SFRC is formulated in the framework
of the Mixture Theory by [5] and based on the microplane model. At microplanes level, it
is described in terms of normal and shear stresses and their related strains. An hyperbolic
yield surface has been adopted while a CAP-cone one of C1 continuity describes the
constitutive behavior in the high confinement regime. Their evolution in the post-peak
regime is described by means of a fracture energy-based work softening which is defined
differently for mode I and II type of failure. Fiber effect on the composite failure behavior
is taken into account through both a bond-slip formulation and a dowel model depending
on the relative orientations between fibers and microplanes.

Then, the capabilities of the microplane theory to capture the directional enrichment
provided by steel fibers to the ductility and to reproduce the particular microcrack direc-
tions are evaluate and compared against FE predictions performed by the authors in the
framework of the discrete approach [6].

The thermodynamically consistent microplane-based elasto-platicity theory is summa-
rized in Section 2 while the analytical solution for localized failure in terms of discon-
tinuous bifurcation is developed in Section 3. Then, in Section 4 the adopted composite
constitutive formulation for SFRC is described. Finally, Section 5 shows the localized
failure analysis for SFRC and later, the concluding remarks are highlighted in Section 6.

2 THERMODYNAMICALLY CONSISTENT MICROPLANE-BASED ELASTO-
PLATICITY

The thermodynamically consistent microplane-based elasto-platicity theory for the
derivation of macroscopic stresses and equilibrium equations in the case of isotropic plas-
ticity have been developed by [7] and [8].

Assuming kinematic constraints, scalar volumetric strain and tangential strain vector
at microplane level (εV and εT , respectively) are computed by means of the following
relationships

εV = V : ε , εT = T : ε (1)
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being ε the macroscopic strain tensor projected on a microplane of normal direction n.
The projection tensors are defined as

V =
1

3
I , T = n · Isym − n⊗ n⊗ n (2)

being Isym the symmetric part of the fourth-order identity tensor.
Thus, the strain vector at microplane level results

tε = εVn+ εT . (3)

Assuming the macro free-energy potential as the integral of the micro free-energy on
a spherical region of unit volume Ω, the following micro-macro free-energy relationship is
proposed

ψmac =
3

4π

∫

Ω

ψmicdΩ (4)

being ψmic=ψmic(εV , εT , κ) the free-energy potential at microplane level, expressed in
terms of the strain components and the scalar internal variable κ. Assuming small strains
and considering the additive decomposition into elastic and plastic parts of the macro-
scopic strain tensor, the microscopic strain components are expressed as

εV = εeV + εpV , εT = εeT + εpT . (5)

Then, the constitutive micro-stresses and their rates are computed as

σV =
∂ψmic

∂εV
→ σ̇V = Ee

V [ε̇V − ε̇pV ]

σT =
∂ψmic

∂εT
→ σ̇T = Ee

T [ε̇T − ε̇pT ]

(6)

while the dissipative stresses and their rates can be computed at microplane level as

ϕmic =
∂ψmic

∂κ
→ ϕ̇mic = H̄κ̇ (7)

being H̄ the hardening/softening modulus.
As in case of macroscopic plasticity, both yield and plastic potential surfaces are set as

Φmic(σV ,σT , ϕ
mic) ≤ 0 with νV =

∂Φmic

∂σV

and νT =
∂Φmic

∂σT

Φ∗mic(σV ,σT , ϕ
mic) ≤ 0 with µV =

∂Φ∗mic

∂σV

and µT =
∂Φ∗mic

∂σT

(8)

and the evolution of the plastic strain components yields
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ε̇pV = λ̇µV , ε̇pT = λ̇µT , κ̇ = λ̇. (9)

Moreover, the Kuhn-Tucker and consistency conditions must be satisfied

Φmic ≤ 0 , λ̇ ≥ 0 , Φmicλ̇ = 0 and Φ̇micλ̇ = 0 (10)

The homogenization of the microplanes energy of Eq. (4) leads to the definition of the
macroscopic stress tensor as

σ =
∂ψmac

∂ε
=

3

4π

∫

Ω

V σV + T T · σTdΩ. (11)

The analytical evaluation of this integral can be solved by numerical integration tech-
niques proposed by [9]. Thus, Eq. (11) can be rewritten as

σ ≈
nmic∑
I=1

[
V IσV

I + T TI · σT
I
]
wI (12)

where the superscript I denotes the Ith material direction and wI the corresponding weight
coefficients. The number of microplanes nmic that ensures accurate approximations is 42.

The macroscopic tangent operator can be analogously obtained as

Eep =
dσ

dε
=

3

4π

∫

Ω

[
V ⊗ dσ

dεV
+ T T · dσ

dεT

]
dΩ (13)

resulting

Eep = Ee − 3

4π

∫

Ω

1

h

[
Ee

VV µV + Ee
TT

T · µT

]
⊗
[
νVV Ee

V + νT · T TEe
T

]
dΩ (14)

with the elastic macroscopic tangent operator computed as

Ee =
3

4π

∫

Ω

Ee
VV ⊗ V + Ee

TT
T · T dΩ. (15)

3 ANALYTICAL SOLUTION FOR LOCALIZED FAILURE IN MICROPLANE-
BASED ELASTO-PLATICITY

In the framework of the smeared crack approach, localized failure modes are related
to discontinuous bifurcations of the equilibrium path, and lead to lost of ellipticity of the
equations that govern the static equilibrium problem. The inhomogeneous or localized
deformation field exhibits a plane of discontinuity that can be identified by means of the
eigenvalue problem of the acoustic or localization tensor, see [10].Analytical solutions for
the discontinuous bifurcation condition conduce to the macroscopic localization condition
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Figure 1: Numerical localization analysis with the microplane-based criterion at peak of the uniaxial
tension tests of SFRC with 8 % fiber content.

det(Qep) = 0. (16)

In case of microplane-based plasticity, the acoustic tensor is expressed as

Qep = Qe − 3

4π

∫

Ω

a∗ ⊗ a

h
dΩ (17)

with the traction vectors computed as

a = [νVV Ee
V + νT · TEe

T ] · n,
a∗ = n · [Ee

VV µV + Ee
TT · µT ] .

(18)

Analytical solutions of the acoustic tensor’s eigenvalues and eigenvector problem lead
to explicit solutions of critical hardening/softening modulus

H̄c = a · [Qep]−1 · a∗ − ν : Ee : µ = 0 (19)

as well as critical localization angles θi, that define the localization directions n, normal
to the failure surface S.

Due to the complex structure of the acoustic tensor for microplane-based plasticity in
Eq. (17), the analytical assessment is not easy. Instead, numerical solutions must be
applied and Eq. (17) can be rewritten as

Qep ≈ Qe −
nmic∑
I=1

[
a∗I ⊗ aI

hI

]
wI . (20)
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Figure 2: Numerical localization analysis with the microplane-based criterion at peak of the simple
shear tests of SFRC with 8 % fiber content.

4 COMPOSITE CONSTITUTIVE FORMULATION FOR SFRC

In this section, the constitutive formulation for SFRC based on microplanes and Mix-
ture Theories [5] is described. On this basis, each infinitesimal volume of the composite is
characterized by the same amount and proportion of its constituents (mortar matrix and
randomly oriented fiber reinforcements for SFRC). Consequently, the composite stress
vector is defined as the weighted sum (in terms of the volume fraction) of the constituent
stresses

tσ = wmσ
m +

nf∑
f=1

wf [σ (εN)nf + τ (εT ) tf ] (21)

being ωm and ωf the weighting functions depending on the volume fraction of each con-
stituent, with m and f indicating mortar and fiber, respectively. The mortar stress vector
is computed as σm = [σN σT ]; σ and τ mean the bond-slip and dowel stresses of the
single fibers, related to their axial and tangential strains, εN and εT ; while nf and tf are
the vectors in the fiber and its orthogonal directions, respectively.

4.1 Failure surfaces evolution for plain mortar

The maximum strength criterion of the aforementioned fracture energy-based plasticity
formulation for plain mortar combines the three-parameter hyperbolic strength function
by [11], in terms of the initial tensile strength χ0, cohesion c0 and the internal friction
angle φ0; with an elliptical CAP surface to more accurately compute mortar peak capacity
in the high confinement regime. There are expressed as

Φhyp = σT
2 − [c0 − σN tan(φ0)]

2 + [c0 − χ0 tan(φ0)]
2 if σC,0 ≤ σN ≤ χ0 (22)

6

254



Sonia M. Vrech, Antonio Caggiano and Guillermo Etse

Figure 3: Plastic microplanes at peak strees of the uniaxial tensile and simple shear tests.

ΦCAP = σT
2 −

[
(σL,0 − σA,0)

2 − (σN − σA,0)
2

τ02

]
= 0 if σN < σC,0 (23)

being σT = ∥σT∥. σA,0, σL,0 and τ0 are material parameters of the CAP. The limit strength
σC,0 corresponds to the particular value of σN for which the equality and continuity
conditions for Φhyp and ΦCAP take place.

The plastic flow rule, computed as

ε̇p =

[
εpN
εpT

]
= λ̇A ·

(
νN
νT

)
(24)

being
νN =

∂Φ

∂σN

, νT =
∂Φ

∂σT

(25)

can be subdivided in five zones according to the confinement level, characterized by par-
ticular expressions of the matrix A.

The post-cracking behavior is controlled by the rate of the plastic work spent, named
ẇ, during three possible post-peak failure mechanisms: mode I, shear or mode II and pure
compaction.

For the sake of brevity, the complete description of the models are omitted. Further
details can be found in [12].

4.2 Failure surfaces evolution for steel fibers

Steel fiber actions, developed on active opened cracks, offer bridging effects on the over-
all SFRC post-peak behavior. On the one hand, the bond-slip mechanism between fibers
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Figure 4: Numerical localization analysis with the microplane-based criterion at peak of the biaxial
tests of SFRC with 8 % fiber content.

and concrete matrix is treated as an axial (tensile) fiber stress acting at microplane level.
On the other hand, a dowel effect is considered to model the shear transfer mechanism
which develops in case of fibers crossing active cracks while they are subjected to stresses
in the normal direction to fibers.

The complete formulations of both, the bond-slip and dowel action, have been detailed
in [12].

5 SOLUTION FOR DISCONTINUOUS BIFURCATION ANALYSIS OF
SFRC

In this section, numerical localization analysis of SFRC have been performed regard-
ing the microplane-based formulation developed in previous sections. Based on the 2D
formulation of the microplane-based elasto-plasticity by [13], 48 microplanes have been
considered for the integration of stresses at each material point. Plane strain state has
been considered, regarding the particular condition when σz = ν(σx + σy).

The evaluation of localization conditions signalized by the appearance of null values of
the normalized determinant of the acoustic tensor corresponding to discontinuous bifur-
cation [det(Qep)/det(Qe)=0], has been carried out at the peak stresses corresponding to
the simple shear, uniaxial tensile, uniaxial compression and biaxial tests.

The model parameters are adjusted according the experimental data given by [14],
being Ec = 39.5GPa and ν = 0.20, tan(φ0) = 0.6, χ0 = 4.0MPa, c0 = 7.0MPa,
σC,0 = −7.0MPa, τ0 = 0.25, GI

f = 0.12N/mm and GIIa
f = 1.2N/mm. While, those

corresponding with the fiber-concrete interactions are: Es = 200.0GPa, ν = 0.30, σy,s =
1.2MPa and τy,f = 2.35MPa.

As can be observed in Figs. (1) and (2), in case of the uniaxial tensile and the simple
shear tests, failure conditions are fulfilled in the critical directions θ= 0◦ - 180◦ and θ=45◦

8
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Figure 5: Numerical localization analysis with the microplane-based criterion at peak of the uniaxial
compression tests of SFRC with 8 % fiber content.

- 135◦, respectively, agreeing for all fiber directions. Figure (3) indicates the position of
plastic microplanes for the both cases. In the first case, it corresponds to microplanes
located between 0◦ and 15◦ on each hemisphere and in the second case, to those between
30◦ and 80◦.

Under biaxial and uniaxial compression tests, the localized failure condition is also
fulfilled. Regarding Figs. (4) and (5), the numerical localization condition is achieved at
θ= 48◦ - 132◦ and θ=45◦ - 135◦, respectively. Plastic microplanes are located at 30◦ and
at 85◦ in the case of biaxial test, whereas in the case of uniaxial compression, between 0◦

and 15◦ in each hemisphere, see Fig. (6).
The sensitivity of the failure behaviour based on the microplane theory regarding the

orientation of fibers in the cementitious matrix has been evaluated. To this end, four
different fiber contents, 0, 3, 8 and 20% (theoretical case) with isiotropical distribution
have been considered in the uniaxial tensile test. The results in terms of numerical
localization analysis are shown in Fig. (7). It can be observed, critical localization
directions remain unchanged with increasing fiber contents.

Finally, the capabilities of the microplane theory to reproduce the particular microcrack
directions are compared against FE predictions performed by the authors [12, 6] in the
frame work of the discrete approach, with the mesoscale interface model for SFRC.

The following examples serve to validate the results obtained in this section. The case
of SFRC three-point bending problem with centrical notch by [15] is considered. Crack
paths in tensile region reproduces a localization angle perpendicular to the load direction,
see Fig. (8). In second place, the shear tests on SFRC specimens is evaluated. As can be
observed in Fig. (9), a critical localization direction at 45◦ is reproduced.
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Figure 6: Plastic microplanes at peak strees of the uniaxial compression and biaxial tests.

6 CONCLUSIONS

In this work, an elasto-plastic microplane constitutive model aimed at predicting the
failure behavior of steel fiber reinforced Concrete (SFRC) has been described. The con-
stitutive formulation considers the well-known Mixture Theory to simulate the combined
bridging interactions of fibers in concrete cracks, i.e. fiber-to-concrete bond-slip as well
as dowel mechanisms.

Numerical analysis of the condition for discontinuous bifurcation, based on the evalua-
tion of the spectral properties of the acoustic or localization tensor through the calculation
of its determinant, has been applied.

The obtained results for the localization analysis under plane strain conditions demon-
strate the capabilities of the constitutive model for concrete to reproduce localized failure.
The numerical results also demonstrate the capabilities of the proposed constitutive the-
ory to capture the directional orientation of the steel fiber reinforcements embedded in
the cementitious matrix.
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