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Abstract Thiswork focuses on the evaluation of tem-
perature effects on concrete failure behavior andmodes
by means of a realistic thermodynamically consistent
non-local poroplastic constitutive model, previously
developed by the authors, which is modified in this
work. In this regard, two original contributions are pre-
sented and discussed. Firstly, and based on significant
published experimental results related to this very com-
plex aspect such as the effects of temperature in con-
crete failure, a temperature dependent non-associated
flow rule is introduced to the poroplastic constitutive
model to more accurately account for the temperature
dependent inelastic volumetric behavior of concrete in
post-peak regime. This is crucial for improving overall
model accuracy, particularly regarding the temperature
effects on concrete released energy during degradation
processes. Secondly, andmore importantly, the explicit
solution of the localization condition in terms of the
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critical hardening modulus is developed regarding the
non-local poroplastic constitutive model reformulated
in this work, which allows the analysis of localized fail-
ure modes in the form of discontinuous bifurcation of
quasi-brittle porous materials like concrete under dif-
ferent temperature, hydraulic and stress state scenarios.
Also numerical procedures are followed, which also
allow the evaluation of temperature effects on the crit-
ical directions for localized failure or cracking which
is performed in this work for a wide spectrum of stress
states and temperatures. Both, undrained and drained
hydraulic conditions are evaluated. The results in this
work demonstrate the soundness of the proposed con-
stitutivemodelmodifications and of the derived explicit
solution for the critical hardening modulus to accu-
rately predict the temperature effects on both, con-
crete volumetric behavior, and on the failuremodes and
related critical cracking direction. They also demon-
strate that concrete failure mode and critical localiza-
tion directions are highly sensitive to temperature, par-
ticularly in the compressive regime.

Keywords Gradient poroplasticity · Discontinuous
bifurcation · Failure · Concrete

1 Introduction

Materials like soils and concrete have a quasi-brittle
and very complex mechanical behavior when strong
accumulations of inelastic strains take place. Under
these critical conditions the evaluation and prediction
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of the involved failure mode and, moreover, the transi-
tion point between brittle or localized and diffuse fail-
ure regimes becomes highly complex. This is a crucial
aspect of material and structural failure mechanics due
to severe consequences of brittle failure modes on the
overall safety conditions of civil constructions.

On the other hand, when concrete is subjected to
long term exposures of high temperatures, it takes place
an irreversible degradation of two fundamental mate-
rial properties, the elastic stiffness (thermal damage)
and the material strength (thermal decohesion). Basi-
cally, the level of degradation depends on themaximum
temperature reached. The experimental evidence, see
Figs. 1 and 2, demonstrates the dramatic and substan-
tial decrease of elastic modulus and Poisson’s ratio as
well as compressive and tensile strengths due to ther-
mal actions. In addition, thermal degradation induces
a much more severe microcracking in concrete. Con-
sequently, and due to the tortuosity of the microcrack
faces, the internal friction of concrete increases. This
is particularly evident between 250 and 400 ◦C. As
the temperature continues to rise, the microcracks con-
verge in amacro fracture and the localized failuremode
turns evident. Two other important effects of tempera-
tures on concrete are the weight loss and the pore pres-
sure variation. The weight loss is related to the porosity
increase and is mainly attributed to humidity loss and
spalling, see Janotka and Bagel (2002). Based on the
experimental evidence by Kalifa et al. (2000), Min-
deguia et al. (2010) and Pereira et al. (2011), it can be
seen that the concrete pore pressure increases due to
the temperature rise under fully undrained conditions
up to a trigger temperature. Once this limit is reached,
a severe micro cracking process developes in the sur-
rounding skeleton which leads to a sudden and quick
pore pressure loss. This cracking process and related
pore pressure change ismainly responsible for thewell-
known concrete spalling that develops in the proximity
to the surface subjected to the heating. From the avail-
able literature, it can be said that up to 200 ◦C only loss
of evaporable water occurs while no significant change
in concrete mechanical properties takes place (Mihashi
et al. 1992). Between 200 and 500 ◦C the dehydra-
tion of calcium silicate hydrate (CSH) and calcium
hydroxide (Ca(OH)2) take place and therefore, the irre-
versible degradation of concrete mechanical proper-
ties is evidenced. It should be noted that in undrained
states, the fluid mass content remains unchanged in the
skeleton.

Fig. 1 Experimental data of a elastic modulus and b Poisson’s
ratio degradations with increasing temperature

Since the pioneer work byRudnicki and Rice (1975)
significant progresswasmade in understanding the per-
formance of the discontinuous bifurcation condition in
concrete materials under consideration of a wide spec-
trum of theoretical frameworks, see a.o. the works by
Ortiz (1987), Ottosen and Runesson (1991), Ottosen
et al. (1991), Kang andWillam (1999), Vrech and Etse
(2006, 2012), Xotta et al. (2016), Jirásek and Rol-
shoven (2009a, b). All of them were related to room
temperature conditions and also to non-porous -based
material theories since under ambient temperature the
influence of the pore pressure in mature concrete is
nonsense.

In the framework of inelastic porous material theo-
ries, the discontinuous bifurcation condition was ana-
lyzed by means of different approaches and taking into
account the influence of the Lode angle (Zhen et al.
2010), water content or fluid pressure (Runesson et al.
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Fig. 2 Experimental data and TD-LDP numerical results of a
compressive and b tensile strength degradation with increasing
temperature

1996; Liu et al. 2005), porosity (Zhang et al. 2002),
permeability (Zhang and Schrefler 2001), temperature
(Sulem 2010), rheological effects (Henann and Kam-
rin 2014), etc. Actually, most of the published local-
ization analyses in porous media are related to soils
as the pore pressure and the saturation degree in this
material play a very important role. Among others we
may refer to the contributions by Sabatini and Finno
(1996), Benallal andComi (2002), Borja (2004), Ehlers
et al. (2004), Kristensson and Ahadi (2005) and Schi-
ava and Etse (2006), which are based on the consider-
ation that discontinuous bifurcations may only occur
in the solid phase. More recently, Mroginski and Etse
(2014) performed a comprehensive analysis on the
potentials for discontinuous bifurcation in partially sat-
urated soils under consideration of arbitrary mechani-
cal and hydraulic conditions.

Several proposals were made on constitutive theo-
ries for predicting failure behavior of concrete when
subjected to thermomechanical actions. We may refer
here to the contributions byTenchev and Purnell (2005)
which is based on a temperature dependent combina-
tion between the continuum damage and mixture theo-
ries, the one by Gawin et al. (2004) which considers a
coupled thermo-chemical and mechanical damage for-
mulation in the framework of the porous material the-
ory to account for the hygro-thermo-chemomechanical
behavior of high strength concrete (HSC) at elevated
temperature, and the one by Gernay et al. (2013) which
is based on the combination of elastoplasticity and
damage theories and includes a generic transient creep
mode.Most of themodel contributions so far, related to
both classical continua and porous media, are based on
local formulations and, therefore, they suffer the well
known shortcomings of the smeared-crack-based con-
stitutive theories in softening regime, when the related
differential equations turn ill-defined. In case of con-
crete subjected high temperature effects, the considera-
tion of non-local, dissipative porous media-based con-
stitutive theories is crucial to accurately account for
both, the regularization of post-peak responses when
concrete failure mode turns brittle, as well as the pore
pressure effect in temperature dependent failure pro-
cesses.

Recently, a non-local, gradient poroplastic mate-
rial formulation for concrete under arbitrary termo-
mechanical condition was proposed by Ripani et al.
(2014). The so-called temperature-dependent Leon–
Drucker–Pragermodel (TD-LDPmodel) considers two
mechanisms in parallel to describe the thermome-
chanical degradation of concrete strength. On the one
hand, a fracture energy-based mechanism account-
ing for the temperature-dependent strength to further
develop active cracks in concrete. On the other hand, a
gradient-based poroplastic mechanism which accounts
for the thermomechanical strength of the concrete
material/continua located between active cracks. This
results in two characteristic lengths, one due to the
gradient theory and the other one due to the fracture
energy-released concept involved in the softening for-
mulation. Both geometrical lengths are defined in terms
of current temperature field and confining pressure. The
predictive capabilities of the TD-LDP model in terms
of strength and stiffness in pre-peak and peak regimes
were demonstrated in Ripani et al. (2014) and is further
demonstrated in Fig. 2, where the numerical prediction
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of the variation of concrete maximum compressive and
tensile strengths with temperature are compared with
experimental results. However, this constitutive model,
according to its current formulation is unable to accu-
rately describe the relevant thermal dependency of con-
crete ductility in post-peak regime. This follows from
the analysis ofmodel predictions of recently pusblished
experimental results on concrete failure behavior under
different temperature conditions, see Hammoud et al.
(2014) and Xargay et al. (2018).

This work involves two novel and original aspects.
On the one hand, a modification of the constitutive
equations of the TD-LDP model is proposed to more
realistically reproduce the influence of both, temper-
ature and confining pressure in the post-peak inelas-
tic response of concrete in view of the recently pub-
lished experimental results by Hammoud et al. (2014)
and Xargay et al. (2018). To this end, the thermody-
namically consistent volumetric non-associated flow
rule is reformulated to account for the acting tempera-
ture and pressure. On the other hand, and very impor-
tantly, explicit solutions for localized failure modes
are obtained in the framework of the Modified non-
local gradient TD-LDP poroplastic model for con-
crete under consideration of arbitrary thermomechan-
ical conditions and for both, undrained and drained
states. These explicit solutions, expressed in terms of
the critical hardening modulus for discontinuous bifur-
cation, allow determining the earliest hardening mod-
ulus for the onset of localized failure and cracking in
concrete, and evaluating the temperature effects in the
cracking initiation and orientation.

After a brief description of the theoretical frame-
work of the considered gradient poroplastic theory for
quasi-brittle materials in Sect. 2, the constitutive equa-
tions of the TD-LDP model and, particularly, the pro-
posed modifications to more accurately capture the
inelastic volumetric behavior in pre- and post-peak
regimes of concrete and its temperature dependence
are detailed in Sect. 3. Then, in Sect. 4 the attention
focuses on the formulation of the discontinuous bifur-
cation condition in the form of localized failure, by
means of numerical and analytical procedures. In par-
allel, the performance and properties of the localized
failure indicator in concrete under different tempera-
ture and stress conditions are analyzed.

Both, the validation against experimental tests on
temperature dependent failure behavior of concrete
which is done in this work with the Modified TD-

LDP model, and the assessments of the temperature
effects on concrete localized failure modes obtained
with this proposed model, demonstrate that concrete
failuremodes are strongly temperature-dependent. The
temperature affects not only the potentials of localized
failure, but also its critical directions, and the transition
point between brittle and diffuse failure. The tempera-
ture sensitivity of localized failure modes in concrete
is more significant in the compressive regime, while
the potentials for discontinuous bifurcations are higher
under plane strain conditions than under plane stress
ones.

2 Thermodynamically consistent gradient
poroplastic constitutive theory

In this section the thermodynamically consistent con-
stitutive equations for gradient poroplastic materials
under general non-isothermal conditions are summa-
rized. Fundamental assumptions are:

– small strain kinematic,
– additive decompositions in elastic and plastic com-
ponents of the rate forms of:

ε̇ = ε̇e + ε̇ p strain tensor, (1)

ṁ = ṁe + ṁ p fluid mass content, (2)

ṡ = ṡe + ṡ p entropy density, (3)

– inelastic behavior takes place in both, skeleton and
porous phases,

– the scalar softening variable is the only one of non-
local character.

The free energy density can be decomposed into
three components, the elastic, the local plastic and the
gradient plastic one

ψ
(
εe,me, θ, qα,∇qα

) = ψe (
εe,me, θ

) + ψ l (qα, θ)

+ψg (∇qα) , (4)

where θ is the relative temperature (θ = T −
20 ◦C, being T the acting temperature). The harden-
ing/softening variables are represented by qα , with the
subscript α = p for the porous phase and α = s for
the solid one. Non-local effects are computed as ∇qα .

The constitutive equations for undrained anddrained
conditions, as well as the dissipative stresses can be
derived fromEq. (4) regardingColeman’s relations, see
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Ripani et al. (2014). Thus, the rate form of the consti-
tutive relations in terms of total stresses, pore pressure
and entropy density related to the solid skeleton under
undrained conditions result

σ̇ = σ̇ ′ − M
ṁe

ρ f
B with σ̇ ′ = E : ε̇e − θ̇ E : A,

(5)

ṗ = M

ρ f
ṁe − MB : ε̇e + ρ f ℵ θ̇ , (6)

ṡs = A : ε̇e − ℵ ṁe + χ θ̇ + ṡ(qα)
f r , (7)

being E the elastic tensor, M the Biot modulus, ρ f the
fluid phase density, B = bI the Biot tensor with b the
Biot coefficient and I the second order identity tensor,
ℵ the latent heat, χ the heat capacity while A = αθ I
is the thermal expansion tensor, with αθ the thermal
expansion coefficient and ṡ(qα)

f r the rate of the unrecov-
ered or “frozen” entropy, according Coussy (1995).

In drained hydraulic conditions, Eqs. (5) and (6)
become

σ̇ = σ̇ ′ − B ṗ with σ̇ ′ = Es : ε̇e − θ̇ Es : As,

(8)

ṁe

ρ f
= B : ε̇e + 1

M
ṗ − ρ f

M
ℵ θ̇ , (9)

where the elastic and thermal expansion tensors of the
solid phase, Es and As respectively, are defined as

Es = E − M B : B, As = ρ f ℵ B − A. (10)

The constitutive equations for undrained anddrained
cases can be obtained from Eqs. (5) and (8), respec-
tively, by replacing the rate of the plastic parameter
from the consistency condition (see “Appendix A”).
These constitutive equations result

σ̇ = Eep : ε̇ + mEep ṁ + Eg Φ̇g + θ E
ep

θ̇ , (11)

σ̇ = sEep : ε̇ + md E
ep

ṗ + d E
g
Φ̇

g
d + θd E

ep
θ̇ ,

(12)

with the gradient yield functions Φ̇g and Φ̇
g
d for the

drained and undrained cases, respectively, and the
material tensors Eep, mEep, Eg , θ E

ep
, sEep, md E

ep
,

d E
g
and θd E

ep
, as detailed in appendix A. In the par-

ticular case that the inelastic behavior is restricted to
the solid phase, then mEep = mE, md E

ep =md E.
Moreover, ṁ = ṁe.

3 The modified TD-LDP model for
temperature-dependent concrete failure
behavior

In this section, the constitutive equations of the Leon–
Drucker–Prager model (TD-LDP model) proposed by
Ripani et al. (2014) for open gradient poroplastic mate-
rials like mature concrete under non-isothermal condi-
tions are modified to more accurately and realistically
predict the temperature dependent volumetric dilata-
tion of concrete under arbitrary thermomechanical con-
ditions. Firstly, the fundamental equations of the TD-
LDP model is refreshed. Then, the proposed tempera-
ture and pressure dependent non-associated flow rule
is described.

3.1 Failure criterion and yield condition in pre- and
post-regimes

Failure criterion and yield surfaces of the TD-LDP
model are summarized by following equations, respec-
tively

Γ
(∗σ ′

, ∗τ , θ
) = 3

2
α(θ) ∗τ 2

+β(θ)n0

( ∗τ√
6

+ ∗σ ′
)

− c0 = 0 , (13)

Φ
(∗σ ′

, ∗τ , θ, hQ, s Q
)

= 3

2
α(θ) ∗τ 2

+β(θ) n0
hQ

( ∗τ√
6

+ ∗σ ′
)

− hQ sQ = 0, (14)

with the normalized Haigh Westergaard effective vol-
umetric and deviatoric stress coordinates ∗σ ′ = I1

3 f ′
c

+
b p

f ′
c
and ∗τ =

√
2J2
f ′
c

respectively, being I1 the first
invariant of total stress tensor, J2 the second invariant of
deviatoric stress tensor and f ′

c the uniaxial compressive
strength. Parameters n0 and c0, corresponding to the
friction and cohesion of concrete at room temperature,

are defined as n0 = 3
2

(
f ′
c
2− f ′

t
2
)

f ′
c f ′

t
and c0 = 1 respec-

tively, with f ′
t the uniaxial tensile strength. Moreover,

α(θ) and β(θ) are the so-called temperature-dependent
functions. Their expressions as well as those corre-
sponding to the evolution of the hardening and soft-
ening dissipative stresses, hQ and s Q respectively, are
detailed in Ripani et al. (2014).

The degradation induced by temperature strongly
affects thematerial stiffness, as demonstrated by exper-
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imental evidence in Fig. 1. According to Ripani et al.
(2014), the dependency of the concrete elasticity mod-
ulus E and the Poisson’s ratio ν on the temperature
level are approximated by the following linear func-
tions, respectively,

E = E0 (1 − αE θ) , (15)

ν = ν0 (1 − αν θ) , (16)

being E0 and ν0 the elasticity modulus and Poisson’s
ratio at 20 ◦C, while αE and αν represent the corre-
sponding degradation parameters.

3.2 Temperature and pressure dependent plastic
potential

To accurately reproduce the strongly temperature and
confiningpressure dependent inelastic volumetric behav-
ior of concrete, the following expression is proposed in
this work for the plastic potential of the Modified TP-
LDP model

Φ∗ (∗σ ′
, ∗τ , θ, hQ, s Q

)

= Φ + β(θ) n0
[
(η − 1) ∗σ ′] = 0 , (17)

with η the volumetric non-associativity degree, which
varies according to the acting effective volumetric
stress and temperature level according to

η(∗σ ′
, θ) = 1

2
− 1

4

[
cos

(
π

∗σ ′
min + ∗σ ′

∗σ ′
max − ∗σ ′

min

)

+ cos

(
π

θmin + θ

θmax − θmin

)]
(18)

when −1.5 ≥ ∗σ ′ ≥ 0 and 0 ≤ θ ≤ 480 ◦C, as can be
seen in Fig. 3. Outside these limits the function takes
constant values, corresponding to the maximum and
minimum ∗σ ′ and θ .

Figure 4 shows the Finite Element predictions
obtained with the Modified TD-LDP model of post-
peak lateral deformations of concrete specimens sub-
jected to residual uniaxial compression tests after being
subjected to different temperatures. The numerical
results in terms of lateral deformations (εr ) agree very
well with the experimental data by Hammoud et al.
(2014) and Xargay et al. (2018), solving the deficien-
cies of the previousmodel as can be observed in Fig. 4a.
In the computational analyses performed in this work,
the dual mixed constant strain triangular (CST) FE
formulation for thermodynamically consistent gradient

20
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300

400
500

−1.5

−1

−0.5

0

0.2

0.4

0.6

0.8

1

σ*   ’

η

(º)T

Fig. 3 Variation of the non-associativity degree in termsof effec-
tive volumetric stress and temperature level

Fig. 4 Numerical predictions of uniaxial compression tests
under increasing temperatures: a former and Modified TD-LDP
models, and experimental results by Hammoud et al. (2014) and
b modified TD-LDP model and experimental results by Xargay
et al. (2018)
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Fig. 5 Numerical predictions of experimental results by Xargay
et al. (2018) a splitting tensile test and b three point bending test

plasticity proposed by Vrech and Etse (2007, 2009) is
used.

As can be observed in Fig. 5a, b, very good
agreement has also been achieved for the experi-
mental results performed by Xargay et al. (2018) of
temperature-dependent splitting tensile tests and three
point bending tests, respectively. The results in these
figures are depicted in terms of the stress versus crack
opening displacements, in case of the splitting tensile
tests, and of load versus crack mouth opening displace-
ment (CMOD), in case of the three point bending tests.
As can be observed in these figures, the Modified TD-
LDP model leads to accurate predictions of the stiff-
ness, and of the peak and residual stresses/loads in all
different tests and temperatures.

Figure 6 illustrates the Modified TD-LDP model
predictions of the temperature dependency of the frac-
ture energy released during post-peak regimes of uni-
axial tensile tests under residual conditions. It can be

Fig. 6 Fracture energy released under Mode I type of failure.
Experimental data versus predictions of the Modified TD-LDP
model

observed that the numerical results, based on the pro-
posed temperature and pressure dependent volumetric
non-associativity degree reproduce very accurately the
experimentally observed form of the thermal depen-
dency denoted by the fracture energy released. In gen-
eral, it can be observed an increment of the released
fracture energy under mode I with temperature up to
400 ◦C, approximately, follows by a strong reduction
with further temperature increments. The results in
Figs. 4 and 6 demonstrate the soundness of the pro-
posed Modified TD-LDP model, particularly regard-
ing its degree of volumetric non-associativity, and the
resulting temperature dependent inelastic volumetric
behavior of concrete.

4 Temperature-dependent localized failure
condition in gradient-based poroplastic
materials

In this section the discontinuous bifurcation analy-
sis for poroplastic materials is carried out regarding
undrained and drained conditions.

From the Hadamard’s compatibility conditions
Hadamard (1903) and the conservation law (ṁ + ∇ ·
w = 0), the jumps of the kinematic variables of a
porous medium can be written as

�ε̇� = �∇u̇� = 1

2
�∇u̇ + (∇u̇)T �

= 1

2
�gs ⊗ n + n ⊗ gs�, (19)
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�∇ · w� = −�ṁ� = g p · n, (20)

being u̇ the velocity vector, gs and g p the skeleton
and porous polarization vectors respectively, w the rel-
ative flow vector and n the normal to the discontinuity
surface S. In quasi-static problems, the jumps of the
hydraulic field (represented through the pore pressure
p), the total stress σ and the temperature θ are obtained
applying Hadamard relation and take the form

c �∇p� + � ṗ�n = 0, (21)

�σ̇ � · n = 0, (22)

c�∇θ� + �θ̇�n = 0. (23)

Taking into account the local entropy balance (see,
Ripani et al. 2014)

θ
[
ρ ṡ + ∇ · (

s f w
)] = ρr − ∇ · h + ϕM (24)

where s f is the fluid mass entropy density, r the vol-
ume heat sources, h the heat flux vector and ϕM the
mechanical dissipation, it can be demonstrated that
the simultaneous fulfillment of Eqs. (23) and (24)
requires the continuity of the temperature time rate
across any eventual discontinuity surface, see Coussy
(1995).

Under undrained boundary conditions, the variation
of the fluid mass content is null in the solid skeleton,
thus ṁ = 0, and the pore pressure can be obtained from
the kinematics of the solid phase.

In the following, the localized failure condition is
analyzed departing from the jump of the total stress ten-
sor across the discontinuity surface. Thereby, the total
stress tensor should satisfy the equilibrium condition
∇ · σ̇ = 0. Instability conditions are evaluated through
the condition for the loss of ellipticity of the differen-
tial equations of equilibrium. Following Svedberg and
Runesson (1997), Tsagrakis et al. (2003)and Abellan
and de Borst (2006), this condition is analyzed through
wave propagation analysis from which the solutions of
the field variables i.e. displacements, fluid mass con-
tent, plastic multiplier and temperature, are obtained
as
⎛

⎜⎜
⎝

u̇
ṁ
λ̇

θ̇

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

U̇(t)
Ṁ(t)
L̇(t)
Θ̇(t)

⎞

⎟⎟
⎠ exp

(
i2π

δ
n · x

)
(25)

being x the position vector (in Cartesian coordinates)
and δ the wave length. The wave solutions are repre-
sentedby U̇(t), Ṁ(t), L̇(t) and Θ̇(t). FromEq. (25) and
considering gradient isotropy, the non-local component
of the plastic consistency in Eq. (39) (see “Appendix
A”), can be expressed as

Φ̇g = − l2c Φ,Qα
Φ∗,Qα

Hg
(
2π

δ

)2

︸ ︷︷ ︸
hg

L̇(t) exp

(
i2π

δ
n · x

)

︸ ︷︷ ︸
λ̇

(26)

where hg is called generalized gradient modulus and
the symbology a,b indicates partial derivative of a
respect to b. Then, the equilibrium condition across the
discontinuity surface enforces (2π/δ)2 Qep

nl ·U̇(t) = 0,
being Qep

nl the non-local acoustic tensor, which in the
undrained case is

Qep
nl = n ·

{
E − 1

(h + hg)

[
E : Φ∗,σ ⊗ Φ,σ : E

−
(
M

ρ f

)2

Φ,p Φ∗,p B ⊗ B

+ M

ρ f
(Φ,p E : Φ∗,σ ⊗ B

+Φ∗,p B ⊗ Φ,σ : E)

]}
· n (27)

and the localized failure indicator results

det
(
Qep

nl

) = 0. (28)

4.1 Special case: drained condition

In this case, porous media are subjected to pore pres-
sure gradients. Thus, the relative flow vector w should
remain continuous, i.e. �w� = 0. Then, from Darcy’s
law follows that �∇p� = 0 and consequently, from
Eq. (21) results � ṗ� = 0. Consequently, from Eq. (43)
follows

d Q
ep
nl = n ·

[
Es − 1

(hd + hg)

(
Φ,σ : Es ⊗ Es : Φ∗,σ

)
]

· n.

(29)
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In case of the Modified TD-LDP model, the deriva-
tives in Eqs. (27) and (29), for undrained and drained
case, respectively, result

Φ,σ =
[
3α(θ) + β(θ) n0√

6 ∗τ

]
1

f ′
c
2 S + β(θ) n0

3 f ′
c

I (30)

Φ∗,σ =
[
3α(θ) + β(θ) n0√

6 ∗τ

]
1

f ′
c
2 S + β(θ) η n0

3 f ′
c

I,

(31)

Φ,p = − β(θ) n0
f ′
c

; Φ∗,p = −β(θ) η n0
f ′
c

, (32)

being S the deviatoric stress tensor.

5 Localized failure analysis in concrete subjected
to temperature with the modified TD-LDP model

In this section, different procedures are followed to
evaluate the performance of the condition for discon-
tinuous bifurcation in the form of localized failure in
concrete under different temperature conditions. For
this purpose, the constitutive equations of the Modi-
fied TD-LDP model are considered.

5.1 Numerical procedure

The numerical analysis of localized failure conditions
in concrete subjected to high temperature in the frame-
work of the Modified TP-LDP model follows from
Eqs. (27) or (29), for drained or undrained case, respec-
tively.

In this analysis, the concrete material properties
indicated in Table 1 are assumed, while the inter-
nal parameters of the Modified TD-LDP constitutive

Table 1 Material properties and internal parameters adopted for
the numerical analysis

Elastic modulus—E 19305.3 MPa

Poisson’s ratio—ν 0.2

Compressive strength— f ′
c 22.0 MPa

Tensile strength— f ′
t 2.7 MPa

Temperature-dependent
functions—γ1; γ2

0.00126; 0.00056 ◦C−1

Degradation parameters—αE ;
αν

0.0014; 0.001 ◦C−1
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Fig. 7 Normalized localization indicators in normal direction to
the modified TD-LDP maximum strength criterion for variable
temperature under plane stresses

model coincide with those presented in Ripani et al.
(2014).

In Figs. 7 and 8 the variation of the Normal-
ized Localization Indicator (NLI) det

(
Qep

nl

)
/det

(
Qe),

along the maximal strength criterion under plane stress
and plain strain conditions, is evaluated for three dif-
ferent temperatures: T = 20, 250 and 500 ◦C. Note
that at temperatures of 20 and 250 ◦C the system is
assumed undrained, while at 500 ◦C, drained hydraulic
conditions are assumed. These assumptions are based
on the experimental results by Kalifa et al. (2000),
Mindeguia et al. (2010), Hager (2013) and Zhang and
Davie (2013) that have clearly demonstrated that the
pore pressure in mature concrete subjected to heating
increases continuously up to a threshold temperature
of about 250 ◦C. Beyond this temperature, concrete
pore pressure strongly decreases to practically zero.
This experimental evidence supports the conclusion
that due to the severe damage in the mortar matrix
caused by the heating beyond the threshold temper-
ature 250 ◦C, drained hydraulic conditions arise in the
porous medium representing the concrete.

For each stress state on the maximum strength sur-
face of the Modified TD-LPDmodel, the scaled values
of NLI are represented in the normal direction to this
surface, see Figs. 7 and 8. In case NLI > 0 for any
arbitrary stress state on the maximum strength crite-
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Fig. 8 Normalized localization indicators in normal direction to
the modified TD-LDP maximum strength criterion for variable
temperature under plane strains

rion of the Modified TD-LDP model, this means that
instead of localized failuremode, a diffuse failuremode
takes place in this particular stress state on the maxi-
mum strength surface. If NLI = 0, means that this
critical stress state on the maximum strength surface
does not only signalizes the peak strength of concrete,
but also that a localized failure mode is occurring. If
NLI < 0, means that the localized failure mode has
occurred before reaching themaximumstrength of con-
crete during the considered loading history, i.e. during
the hardening or pre-peak regime.

Main conclusions arising from the results in Figs. 7
and 8 are:

– The potentials of localized failure as defined by
NLI (length of the normal vectors to the strength
surfaces) strongly increase with increasing temper-
ature.

– Thehighest potential of localized failure is observed
under plane strains and T = 500 ◦C, for all stress
states on the maximum strength surface.

– As the temperature increases, the extension of the
portion of themaximumstrength surface associated
to localized failure modes, enlarges.

– The zone of the maximum strength surface associ-
ated to localized failure appears in the compression-
tension regime. The case of plane stress under
500 ◦C is the most critical case for discontinuous
bifurcation as the portion of the maximum strength
surface associated to this failure mode enters in the
compression-compression regime.
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Fig. 9 Localization analysis with the Modified TD-LDP model
at the peak of the uniaxial compression test for different temper-
atures, under plane stress state

Figures 9, 10 and 11 show the performance of the
NLI at peak of the uniaxial compression, biaxial com-
pression and uniaxial tensile tests, respectively, under
plane stresses. From Figs. 9 and 10 follow that the
most critical directions for localization varieswith tem-
perature while the potentials for localization increases
with temperature. Moreover, in the uniaxial compres-
sion test (Fig. 9), the localization condition is fulfilled
for 500 ◦C. In this figure can also be observed that
the local version of the Modified TD-LDP model, i.e.
without the gradient terms, leads to very similar predic-
tions as the non-localModifiedTD-LDPmodel in terms
of the NLI performance. This is because, the gradient
characteristic length of the Modified TD-LDP model
approaches zero in this stress case which is associated
to small confining pressure. In the biaxial compression
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Fig. 10 Localization analysis with the modified TD-LDPmodel
at the peak of the biaxial compression test for different temper-
atures, under plane stress state

case (Fig. 10), the difference between the local and non-
local Modified TD-LDP model predictions of the NLI
for 500 ◦C is relevant as the confining pressure (and the
gradient characteristic length) is large. Although both
model versions lead to the same critical directions for
localization, the discontinuous bifurcation condition is
not fulfilled in the fracture energy- and gradient-based
poro-plastic model considered in this work. Figure 12
shows the NLI performance at peak of the uniaxial
compression test under plane strains. When comparing
these results with those in Fig. 9 it can be concluded
that the out of plane stress which develops in the plane
strain case plays an important role in stabilizing the fail-
ure mode at peak of the uniaxial compression test as no
localization takes place, including the case of 500 ◦C.
Nevertheless, from Figs. 9, 10, 11 and 12 it can be con-
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Fig. 11 Localization analysis with theModified TD-LDPmodel
at the peak of the uniaxial tensile test for different temperatures,
under plane stress state

cluded that temperature strongly damages and destabi-
lizes concrete performance, leading to high localized
failure potentials. Full 3D variations of the NLI perfor-
mances at peak stresses of the four tests considered in
these numerical analyses and under both, plane strains
and plain stresses, are shown in Figs. 13, 14, 15 and 16,
while the resulting critical localization directions are
shown in Table 2, whereby the cases related to local-
ized failure are underlined. Following conclusions are
obtained from Figs. 9, 10, 11, 12, 13, 14, 15, 16 and
Table 2:

– The results confirm that at 500 ◦C strong degrada-
tionof theNLIpositiveness takes place for all possi-
ble wave propagation directions, indicating strong
increase of concrete localization potentials.

– The degradation of overall concrete mechanical
features under increasing temperature (area below
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Fig. 12 Localization analysis with theModified TD-LDPmodel
at the peak of the uniaxial compression test for different temper-
atures, under plane strain state

the NLI vs. α curves) is more severe in plane strains
than plan stresses. The reason for this is the full 3D
stress state that develops under plain strains which
leads to a volumetric stiffness degradation due to
temperature.

– Localized failure forms appear mostly under plane
stresses in both, pure shear test (for all different
temperatures), and uniaxial compression test (for
500 ◦C). Under plane strains, localized failure takes
place only in the pure shear test and for 500 ◦C.

5.2 Analytical procedure

Explicit solutions for the critical hardening modulus in
localization and the corresponding critical directions
were developed by Ottosen and Runesson (1991) and
Ottosen et al. (1991), bymeans ofLagrangemultipliers.

Fig. 13 Performance of the normalized localization indicator at
peak stress of the uniaxial compression test for variable temper-
atures. a Plane stress state, b plane strain state

These solutions were applied to quasi-brittle materials
and gradient continua by Vrech and Etse (2012) and
also to temperature-independent gradient porousmedia
by Mroginski and Etse (2014).

In this work, the analytical solutions for discontinu-
ous bifurcation are derived for temperature dependent
gradient poroplastic materials like concrete. Only the
undrained case will be developed as the analytical solu-
tions for the drained case can be deducted from the
undrained one when M = 0.

The solution of the smallest eigenvalue of Qep
nl in

Eq. (27)with respect to themetric definedby the inverse
to the elastic acoustic tensor [Qe]−1 (being Qe = n ·
E · n) leads to the following localization condition
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Fig. 14 Performance of the normalized localization indicator at
peak stress of the biaxial compression test for variable tempera-
tures. a Plane stress state, b plane strain state

H
l − (

Qe)−1 a ⊗ b +
(
M

ρ f

)2 (
Qe)−1 c⊗ d

− M

ρ f

(
Qe)−1

(c⊗ a + d ⊗ b) − M

ρ f

(
Φ,σ : B Φ∗,p

−ρ f Φ,pB : Φ∗,σ + Φ,pΦ
∗,p

) + Φ,σ : E : Φ∗,σ
+ hg = 0 (33)

with

a = n · E : Φ∗,σ , b = Φ,σ : E · n, (34)

c = Φ,p n · B, d = Φ∗,pB · n. (35)

The critical hardening modulus and their associ-

ated localization directions are defined as H
l
crit =

max
[
H

l
(n)

]
.

Fig. 15 Performance of the normalized localization indicator at
peak stress of the pure shear test for variable temperatures. a
Plane stress state, b plane strain state

Explicit solutions are evaluated by means of the
Lagrange’smultipliermethod proposed byOttosen and
Runesson (1991), which evaluates the extreme proper-
tiesof

L = H
l
crit

4G
+ ℘

(
n12 + n22 + n32 − 1

)
, (36)

where ℘ is the Lagrange multiplier and G the shear
modulus. In appendix B, critical hardening modulus
and the corresponding localization directions are eval-
uated for all stress states on the maximum strength sur-
face of the Modified TD-LDP model. It is important to
highlight that critical hardening modulus as well as the
corresponding critical directions not only depends on
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Fig. 16 Performance of the normalized localization indicator at
peak stress of the uniaxial tensile test for variable temperatures.
a Plane stress state, b plane strain state

the porous medium features but also on the tempera-
ture, because the elastic parameters and the derivatives
of the loading function and plastic potential involved in
their calculations strongly depend on these variables.

6 Conclusions

In this work, a reformulation of the non-local thermo-
dynamically consistent TD-LDP model for concrete
subjected to arbitrary mechanical and thermal load-
ing was presented with the purpose to improve its
accuracy for predicting the temperature effects in the

volumetric dilatancy and lateral deformation of con-
crete during the post-peak regime. Comparisons pre-
sented with recently published experimental results
confirm the soundness of the proposed Modified TD-
LDP model for predicting the temperature-dependent
failure behavior of concrete in the compressive and ten-
sile regimes.

On the other hand, explicit solutions for the criti-
cal hardening modulus corresponding to the first local-
ization or cracking condition in concrete under con-
sideration of arbitrary thermo-mechanical conditions
were developed in the framework of the Modified TD-
LDP model for porous materials like concrete. Then,
numerical evaluations of the localization conditions
and cracking directions were performed for a wide
spectrum of stress and temperature conditions and con-
sidering drained and undrained hydraulic conditions.
The results in this work demonstrate that temperature is
a key aspect regarding failure mode and critical crack-
ing directions of concrete. This is valid for all stress
paths in the compression regime. The numerical and
analytical results with the Modified TD-LDP model
demonstrate that the stability condition at peak under
plane strain state is much more affected by tempera-
ture than that corresponding to plane stress. Although
at room temperature, plane strain conditions potential
the overall stability and the diffusion of concrete failure
as compared to the plane stress case, this situation is
less pronounced under increasing temperature. This is a
relevant conclusion in this paper regarding temperature
effects on concrete failure modes.

Brittle or localized failure modes are also exhibited
in the uniaxial tensile test (for all possible tempera-
tures), and in the pure shear test under plane stress
conditions. Finally, and as said before, localized fail-
ure in plane strain states takes place only under high
temperature.

All together, the numerical and analytical solu-
tions for discontinuous bifurcation of temperature-
dependent gradient poroplastic media in this work
offer great potentials for more accurate predictions and
understanding of concrete failure modes under differ-
ent thermomechanical scenarios, andof their sensitivity
to temperature.
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Table 2 Critical localization directions for uniaxial tension/compression, biaxial compression and pure shear tests at variable temper-
ature

Temperature (◦C) Critical localization angles (◦)—plane stress state/plane strain state

Uniaxial compression Biaxial compression Pure shear Uniaxial tension

20 36.56–143.44 63.56–116.44 21.93–158.07 0–180

32.46–147.54 50.16–123.84 14.82–165.18 0–180

250 37.68–142.32 65.81–114.19 23.65–156.35 0–180

34.14–145.86 53.34–126.66 19.32–160.68 0–180

500 38.25–141.75 66.94–113.06 24.75–155.25 0–180

35.64–144.36 57.60–122.40 22.14–157.80 0–180

Localized failure cases are underlined

Appendix A: Temperature-dependent flow theory
for non-local poroplasticity

The rates of the plastic strains, plastic fluid mass and
hardening/softening variables are

ε̇ p = λ̇ Φ∗,σ , ṁ p = λ̇ Φ∗,p, q̇α = λ̇ Φ∗,Qα , (37)

being λ̇ the plastic parameter rate, Φ∗ = Φ∗(σ , p, θ,

Qα) and Φ = Φ(σ , p, θ, Qα) the plastic potential
and yield condition, respectively. Note that symbology
Φ∗,b indicates partial derivatives of Φ∗ respect to b.
Total dissipative stresses are computed as the addition
of local and non-local contributions Qα = Ql

α + Qg
α ,

while the consistency condition results

Φ̇ = Φ,σ : σ̇ + Φ,p ṗ + Φ,θ θ̇ + Φ,Qα Q̇α = 0 . (38)

Therefore, the following differential equation for the
plasticmultiplier can be obtained for the undrained case
under homogeneous conditions (∇Qα = 0) and non-
local dissipative stresses independent of temperature
gradients

λ̇h + Φ̇ trial + Φ̇g = 0. (39)

The generalized local plastic modulus and the rates of
the local and gradient loading functions are computed
as

h = − Φ,σ : E : Φ∗,σ

+ M

ρ f
Φ,σ : B Φ∗,p − M

ρ f
Φ,p Φ∗,p

+MΦ,p B : Φ∗,σ −Hl
αΦ,Qα Φ∗,Qα , (40)

Φ̇ tr ial = − Φ,σ E : ε̇

− M

ρ f
Φ,σ : B ṁ + Φ,σ : Aθ̇ + M

ρ f
Φ,p ṁ

− Φ,p MB : ε̇ + Φ,p ρ f χθ̇

+
(
s(qα)
f r ,qα +Φ,θ

)
θ̇ , (41)

Φ̇g = − l2c
2θ

Hg
α Φ,Qα ∇qα · ∇ θ̇ + l2c

2θ
Hg

α Φ,Qα ∇θ · ∇qαθ̇

+ 2l2c H
g
α Φ,Qα Φ∗,Qα ∇qα · ∇λ̇

− l2c
2θ

Hg
α Φ,Qα Φ∗,Qα ∇θ · ∇λ̇ , (42)

respectively, being Hl
α the local-plastic hardening/

softening modulus, Hg
α the gradient softening modulus

and lc the gradient characteristic length. Under similar
assumptions and for the drained case, Eq. (39) can be
rewritten as

hd λ̇ + Φ̇ trial
d + Φ̇

g
d = 0 , (43)

being

hd = −Φ,σ ·Es · Φ∗,σ −Φ,Qα Hl
αΦ∗,Qα , (44)

Φ̇ trial
d = Φ,σ : Es : ε̇ + (

Φ,p −Φ,σ : B)
ṗ

+ (−Φ,σ : A + Φ,Qα H θ + Φ,θ
)
θ̇ , (45)

Φ̇
g
d = l2c H

g
α Φ,Qα Φ∗,Qα ∇2λ̇. (46)

By replacing λ̇ from Eqs. (39) and (43) in Eqs. (5)
and (8), the constitutive relations for both undrained
and drained conditions result

σ̇ = E : ε̇ − M

ρ f
ṁ B +

(
M

ρ f
Φ∗,p −E : Φ∗,σ

)

[

−
(
Φ̇ tr ial + Φ̇g

)

h

]

− A θ̇ , (47)

σ̇ = Es : ε̇ − Es : Φ∗,σ

[

−
(
Φ̇ tr ial

d + Φ̇
g
d

)

hd

]
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−B ṗ − As θ̇ . (48)

Finally, Eqs. (47) and (48) can be rewritten as

σ̇ =Eep : ε̇ + mEep ṁ + Eg Φ̇g + θ E
ep

θ̇ , (49)

σ̇ =sEep : ε̇ + md E
ep

ṗ + d E
g
Φ̇

g
d + θd E

ep
θ̇ , (50)

respectively, with the elastoplastic tensors

Eep = E − 1

h + hg
[
E : Φ∗,σ ⊗Φ,σ : E

−
(
M

ρ f

)2

Φ,p Φ∗,p B ⊗ B

+ M

ρ f
(Φ,pE : Φ∗,σ ⊗B

+ Φ∗,p B ⊗ Φ,σ : E)
]
, (51)

mEep = − M

ρ f

[
B − 1

h

(
M

ρ f
Φ∗,p Φ,p B

− M

ρ f
Φ∗,p Φ,σ B : B − E : Φ∗,σ Φ,p

+E : Φ∗,σ Φ,σ : B
)]

, (52)

θ Eep = 1

h

(
E : Φ∗,σ ⊗Φ,σ : A − χE : Φ∗,σ Φ,p

− M

ρ f
Φ∗,p B Φ,σ : A + χ

M

ρ f
Φ∗,p Φ,p B

)
, (53)

sEep = Es − 1

hd

(
Φ,σ : Es ⊗ Es : Φ∗,σ

)
, (54)

md E
ep = − 1

hd

(
Φ,p −Φ,σ : B)

Es : Φ∗,σ −B, (55)

d E
g = − 1

hd
Es : Φ∗,σ , (56)

θd E
ep = − 1

hd
Φ,σ : As ⊗ Es : Φ∗,σ +As . (57)

Appendix B: Critical bifurcation directions and
hardening modulus

Taking into account that

Φ,σ = Φ,σ − 1

3

(
Φ,σ

)
V I, Φ∗,σ = Φ∗,σ −1

3

(
Φ∗,σ

)
V I,

(58)

where Φ,σ and Φ∗,σ are the deviatoric components of
Φ,σ and Φ∗,σ , respectively, while considering a volu-
metric non-associated flow rule, i.e.

(Φ,σ )V �= (
Φ∗,σ

)
V and Φ∗,σ = Φ,σ (59)

then, it can be concluded that solutions of Eq. (36)
depend on the sign of the following coefficients
(according Mroginski and Etse 2014)

c13 =Φ,σ1 + (1 − 2α0)Φ,σ3 + r , (60)

c31 =Φ,σ3 + (1 − 2α0)Φ,σ1 + r , (61)

being

r = α2
[
(Φ,σ )V + (

Φ∗,σ
)
V

] − α3
(
Φ,p +Φ∗,p

)
,

(62)

k = −1

2

(
Φ,σi

)2 + α1 (Φ,σ )V
(
Φ∗,σ

)
V

+ α5Φ,p Φ∗,p , (63)

with

α0 = φ, (64)

α1 = λ
′
L (1 − φ)

G

(
1

3
+ λ

′
L

4G

)

−
(

λ
′
L

4G
+ φ

9
+ 1

18

)

,

(65)

α2 = 1 − φ

3
+ λ

′
L (1 − φ)

2G
, α3 = Mb (1 − φ)

2G
,

(66)

α4 = Mb

4G

[

1 − (1 − φ)
λ

′
L

G

]

− Mb (1 − φ)

6G
, (67)

α5 = (1 − φ)

(
Mb

2G

)2

− M

4G
. (68)

Finally, the solutions of H
l
crit and its critical direc-

tions n, are obtained for different cases

(a) r ≥ 0 and c31 ≥ 0

H
l
crit = 4G (1 − α0)

(
Φ,σ1

)2 + r Φ,σ1

+ α4
[
Φ,p

(
Φ∗,σ

)
V + Φ∗,p (Φ,σ )V

] + k − hg

4G

Φ,σ1 > Φ,σ2 > Φ,σ3 ⇒ n21 = 1, n22 = 0, n23 = 0

Φ,σ1 = Φ,σ2 > Φ,σ3 ⇒ n21 + n22 = 1, n23 = 0

Φ,σ1 > Φ,σ2 = Φ,σ3 ⇒ n21 = 1, n22 = n23 = 0 (69)

(b) r ≥ 0 and c13 ≤ 0 or r ≤ 0 and c13 ≥ 0

H
l
cri t = G

α0

(
Φ,σ1 +Φ,σ3 +r

)2 − Φ,σ1Φ,σ3

+ α4

[
Φ,p

(
Φ∗,σ

)
V + Φ,∗p

(
Φ,σ

)
V

]

+ k − hg

4G
(70)
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Φ,σ1 > Φ,σ2 > Φ,σ3 ⇒ n21 = c13
2α0

(
Φ,σ1 −Φ,σ3

) ,

n22 = 0, n23 = − c31
2α0

(
Φ,σ1 −Φ,σ3

) (71)

Φ,σ1 = Φ,σ2 > Φ,σ3 ⇒ n21 + n22 = c13
2α0

(
Φ,σ1 −Φ,σ3

) ,

n23 = − c31
2α0

(
Φ,σ1 −Φ,σ3

) (72)

Φ,σ1 > Φ,σ2 = Φ,σ3 ⇒ n21 = c13
2α0

(
Φ,σ1 −Φ,σ3

) ,

n22 + n23 = − c31
2α0

(
Φ,σ1 −Φ,σ3

) (73)

(c) r ≤ 0 and c13 ≤ 0

H
l
crit = 4G (1 − α0)

(
Φ,σ3

)2 + rΦ,σ3

+α4
[
Φ,p

(
Φ∗,σ

)
V + (Φ,σ )V

] + k − hg

4G
(74)

Φ,σ1 > Φ,σ2 > Φ,σ3 ⇒ n21 = 0, n22 = 0, n23 = 1

Φ,σ1 = Φ,σ2 > Φ,σ3 ⇒ n21 = n22 = 0, n23 = 1

Φ,σ1 > Φ,σ2 = Φ,σ3 ⇒ n21 = 0, n22 + n23 = 1

Some derivatives in Eqs. (69)–(74) have been
already particularized for the TD-LDP model in
Eqs. (31) and (32), while the other ones are

Φ,σ = Φ,∗σ =
[
3 α(θ) + β(θ) n0√

6 ∗τ

]
1

f ′
c
2 S (75)

(Φ,σ )V = β(θ) n0
f ′
c

(76)

(
Φ∗,σ

)
V = β(θ) η n0

f ′
c

. (77)
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