

Programa Analítico FÍSICA III

Datos Generales

Nombre de la Actividad Curricular: FÍSICA III

Código: 15 FI3

Carrera: Ingeniería Química

Bloque de Conocimientos al que pertenece: Ciencias Básicas

Año académico: 2025

Equipo docente

Nombre:	Cargo:	Dedicación:
Nieva, Enrique Nicolás	Profesor Titular	Exclusiva
Villafuerte, Manuel José	Profesor Titular	Exclusiva
Corregidor, Diego Hernando	Profesor Asociado	Exclusiva
Molina, María Laura	Profesor Adjunto	Exclusiva
Ferreyra, Martín Guido	Profesor Adjunto	Exclusiva
Leal, Sebastián	Jefe de Trabajos Prácticos	Semidedicación
Vilca, Víctor Eduardo	Jefe de Trabajos Prácticos	Semidedicación
Cabalín, Analía Mabel	Jefe de Trabajos Prácticos	Exclusiva
Jerez Fanciotti, Alejandra Cecilia	Auxiliar Docente Graduado	Exclusiva
Vázquez, Juan Pablo	Auxiliar Docente Graduado	Exclusiva
Hemsy, Axel	Auxiliar Docente Graduado	Exclusiva

Fundamentación

Mostrar la importancia fundamental de una Ciencia Básica de las Ingenierías buscando al mismo tiempo que los alumnos comprendan e interpreten los fenómenos físicos que observan en la realidad y en mostraciones de clase y experimentos seleccionados de laboratorio. Desarrollar en los alumnos la capacidad de observar, caracterizar, modelar y aplicar las leyes fundamentales de la Física para relacionar las diferentes variables de un fenómeno físico y/o aplicación tecnológica. Promover en los estudiantes el desarrollo del razonamiento lógico y de las técnicas de la experimentación científica y

tecnológica, mediante formulación de hipótesis, modelado, experimentación, comprobación y evaluación de resultados y/o proyectos específicos.

Resultados de Aprendizaje

Al finalizar exitosamente el cursado de la actividad curricular el estudiante será capaz de:

- **R.A. 1:** Reconocer los fenómenos eléctricos, magnéticos y ópticos en la naturaleza y en el funcionamiento de dispositivos científicos e ingenieriles.
- **R.A. 2:** Explicar las leyes físicas que rigen los fenómenos electromagnéticos y ópticos y sus condiciones de validez.
- **R.A. 3:** Interpretar las relaciones matemáticas y las herramientas gráficas para describir los fenómenos físicos de interés.
- **R.A. 4:** Contrastar modelos teóricos con resultados experimentales para establecer límites de validez de los modelos, identificando cotas de error en mediciones y medidas y discutiendo resultados de la teoría de errores de Gauss.
- **R.A. 5:** Resolver situaciones problemáticas de electricidad, magnetismo y óptica. con autonomía y aplicando técnicas diferentes.
- **R.A. 6:** Aplicar el método y el tipo de instrumental de medición y control adecuados en el laboratorio para obtener valores experimentales con error prefijado, evaluando críticamente el proceso de mediciones e informando conclusiones usando formato textual de informe técnico.

Contenidos

Contenidos mínimos de la Actividad Curricular:

Electrostática. Carga eléctrica. Ley de Coulomb. Campo eléctrico. Potencial y diferencia de potencial eléctrico. Energía eléctrica. Capacidad. Corriente eléctrica. Resistencia. Ley de Ohm. Campo magnético. Efectos magnéticos de corrientes. Ley de Biot - Savart. Ley de Ampere. Flujo magnético. Inducción electromagnética. Ley de Faraday. Fem y fuente de fem. Inductancia. Circuitos eléctricos de continua y alterna. Leyes de Kirchoff. Electromagnetismo. Leyes de Maxwell. Ondas electromagnéticas. Energía. Intensidad. Leyes de propagación. Reflexión. Refracción. Superposición de ondas. Interferencia. Difracción. Polarización. Óptica geométrica. Espejos y Lentes. Construcción de imágenes. Sistemas ópticos. Fuentes luminosas. Efectos ambientales de las radiaciones no ionizantes.

Programa Extendido

Unidad 1: CARGA ELÉCTRICA. Interacciones electrostáticas: La Física, la tecnología electromagnética y sus aplicaciones. Carga eléctrica y estructura de la materia. Conductores, aislantes y cargas inducidas. Fuerzas eléctricas. Ley de Coulomb. Superposición de fuerzas.

Unidad 2: CAMPO ELÉCTRICO. Campo electrostático de una carga puntual. Cálculos de campos eléctricos. Distribuciones de cargas: puntual, lineal, superficial y volumétrica. Líneas y flujo de campo eléctrico. Ley de Gauss. Aplicaciones de la ley de Gauss.

Unidad 3: ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO. Energía potencial eléctrica. Energía de configuraciones de cargas. Potencial eléctrico. Diferencia de potencial electrostático. Cálculo del potencial eléctrico. Distribuciones de cargas: puntual, lineal, superficial y volumétrica. Relación entre campo y potencial eléctrico. Superficies equipotenciales. Aplicaciones.

Unidad 4: CAPACITANCIA, CAPACITORES Y DIELÉCTRICOS. Capacitores y capacitancia. Capacitores en serie y en paralelo. Energía en capacitores. Energía en campo eléctrico. Efecto del dieléctrico en un condensador.

Unidad 5: FUENTES Y CORRIENTE ELÉCTRICA. Corriente directa. Fuentes de fuerza electromotriz (FEM) de corriente directa (cd). Corriente eléctrica, modelo de la conducción. Resistividad y resistencia. Ley de Ohm. Efectos de la temperatura. FEM y elementos de circuitos de cd. Energía y potencia en circuitos. Conexiones en serie y paralelo. Introducción a leyes de los circuitos. Circuito RC con FEM de cd.

Unidad 6: MAGNETISMO, CAMPO MAGNÉTICO E INTERACCIÓN MAGNÉTICA. Magnetismo. Líneas de campo magnético y flujo magnético. Movimiento de partículas cargadas en un campo magnético. Fuerzas de Lorentz. Fuerza magnética sobre un conductor que transporta corriente. Fuerza y par de torsión en una espira de corriente. Motor de cd.

Unidad 7: FUENTES DE CAMPO MAGNÉTICO. Cálculo de campos magnéticos. Campo magnético de una carga en movimiento. Campo magnético de un elemento de corriente y de un conductor que transporta corriente. Leyes de Biot-Savart y de Ampère. Aplicaciones de la ley de Ampère. Fuerza entre conductores paralelos.

Unidad 8: INDUCCIÓN ELECTROMAGNÉTICA. Experimentos de inducción. Ley de Faraday-Lenz. Generación de FEM. Autoinducción. Inducción mutua. Energía en el campo magnético. Circuito serie RL. Régimen Transitorio. Aplicaciones.

Unidad 9: OSCILACIONES LIBRES Y FORZADAS. Circuitos de corriente alterna. Circuito LC. Circuito RLC serie sin fuente. Circuito RLC con fuente de tensión alterna. Corriente y potencia en circuitos de alterna. Resonancia. Corriente de desplazamiento. Aplicaciones.

Unidad 10: ECUACIONES DE MAXWELL Y ONDAS ELECTROMAGNÉTICAS. Ecuaciones de Maxwell. Ondas electromagnéticas (OEM). Espectro Electromagnético. Energía de una OEM. Propagación. Vector de Poynting. Intensidad. Aplicaciones.

Unidad 11: FENÓMENOS DE SUPERPOSICIÓN DE OEM. Interferencia y difracción. Superposición de OEM. Polarización. Interferencia. Experimento de Young. Difracción. Interferencia y difracción. Redes de difracción. Aplicaciones.

Unidad 12: REFLEXIÓN DE LA LUZ. Espejos planos y esféricos. Óptica geométrica, rayos de luz. Leyes de reflexión y refracción de la luz. Ley de la reflexión. Superficies planas. Espejos. Formación de imágenes y sus características. Espejos esféricos. Aplicaciones.

Unidad 13: REFRACCIÓN DE LA LUZ. Prismas, medios transparentes. Ley de la refracción. Dispersión, índice de refracción. Reflexión total interna. Prismas. Fibra óptica Superficies esféricas en medios transparentes. Formación de imágenes. Aplicaciones.

Unidad 14: DISPOSITIVOS E INSTRUMENTOS. Lentes gruesas y delgadas. Formación de imágenes. Visión. Instrumentos ópticos: lupa, microscopio, telescopio. Aplicaciones.

Unidad 15: TRABAJOS PRÁCTICOS DE LABORATORIO

- T.1. Ajuste gráfico y analítico para una variable que se mide como función de otra. Ajuste lineal por método mínimos cuadrados. Error de la variable dependiente. Evaluación de errores de los parámetros.
- T.2. Dependencia entre la tensión aplicada y la corriente que circula por un conductor. Ley de Ohm. Ajuste entre modelos teóricos y datos experimentales. Medición de resistencias. Método directo y método de compensación. Estudio comparativo de los diferentes métodos. Conclusiones.
- T.3. Efecto Hall. Curvas de variación de la tensión Hall en función de la intensidad de corriente en el cristal y de la inducción magnética. Ajuste entre modelos teóricos y datos experimentales. Determinación del número de portadores por unidad de volumen para una muestra. Medición de campos magnéticos a partir de tensiones Hall. Estudio comparativo con otros métodos para medir inducción magnética. Conclusiones.
- T.4. Determinación de e/m para electrones. Determinación de e/m mediante un tubo de rayos filiforme, midiendo los campos eléctrico y magnético y el radio de la trayectoria de los electrones. Ajuste entre modelos teóricos y datos experimentales. Conclusiones.
- T.5. Transitorios. Carga y descarga de un condensador C a través de una resistencia R. Curvas de carga y descarga para distintos valores de C y R. Determinación experimental de la constante de tiempo. Carga y descarga de una inductancia L a través de una resistencia. Ajuste entre modelos teóricos y datos experimentales. Conclusiones.
- T.6. Transitorios con capacidad, autoinducción y resistencia. Oscilaciones eléctricas. Determinación experimental de la resistencia crítica. Análisis de modelo teórico. Estudio comparativo entre las oscilaciones mecánicas estudiadas en curso de Laboratorio de Física II y electromagnéticas. Aplicaciones.
- T.7. Difracción e interferencia por una o varias aberturas. Patrones de intensidad. Redes. Ajuste entre modelos teóricos y datos experimentales. Conclusiones.
- T.8. Experiencias con lentes convexas. Ajuste entre modelos teóricos y datos experimentales.

 Determinación de distancias focales. Análisis de aberraciones. Construcción de instrumentos ópticos y determinación del aumento. Conclusiones.

Bibliografía

- Física Universitaria Volumen 2. Young, H., Freedman, R., Sears, F., Zemansky, M.W. 13a Ed.
 Disponible en Biblioteca Central FACET. Libro impreso
- Física para Ciencias e Ingeniería. Serway, R. y Jewett, J. 9a Ed. Disponible en Biblioteca Central FACET. Libro impreso.
- Física para la Ciencia y la Tecnología. Tipler, P. y Mosca, G. 6a Ed. Disponible en Biblioteca Central FACET. Libro impreso.
- Física. Parte 2. Resnick, R., Halliday, D. y Krane, K. 4a Ed. Disponible en Biblioteca Central FACET. Libro impreso.

- Fundamentos de Física. Volumen 2. Electricidad y Magnetismo. Sears, F. 6a Ed. Disponible en Biblioteca Central FACET. Libro impreso.
- Fundamentos de Física. Volumen 3. Óptica. Sears, F. 4a Ed. Disponible en Biblioteca Central FACET.
 Libro impreso.
- Física general. Frederick J. Bueche, F.J., Hecht, E. 9a Ed. Disponible en Biblioteca Central FACET. Libro impreso.
- Física Elemental. Óptica, magnetismo, electricidad. Fernández, J. y Galloni, E. 6a Ed. Disponible en Biblioteca Central FACET. Libro impreso.

Carga horaria

Carga horaria total de la Actividad Curricular: 128

Carga horaria de Ciencias Básicas: 128

Duración del dictado en semanas para aprobación directa: 16

Duración del dictado en semanas de recuperación: 4

Carga horaria total destinada a las actividades de formación práctica supervisada (Trabajos prácticos de resolución de problemas y Laboratorio): **75**

Metodología aplicada

Plan de actividades:

En el desarrollo de la unidad curricular se aplican:

- I. Clases plenarias teórico-prácticas interactivas en anfiteatro (3 horas por semana). Se utilizan distintas herramientas didácticas, tradicionales y mediadas con TIC para enseñar los conceptos y principios básicos de actividad curricular. Se provee una guía semanal de contenidos para trabajo en anfiteatros y aulas. Se realizan demostraciones experimentales sencillas a cargo del equipo docente, se muestran videos y simulaciones computadas. Se adelantan y coordinan actividades de las clases prácticas y se ponen en contexto las prácticas de laboratorio. Actividad obligatoria.
- II. Clases prácticas en aulas (3 horas por semana), para grupos reducidos. Son una guía de estudio en estrecha vinculación con las clases plenarias teórico-prácticas. Se dispone de una guía semanal de trabajos prácticos con ejercicios ordenados de menor a mayor grado de complejidad. Se incluyen figuras, gráficos, tablas técnicas de valores de constantes y experimentales. Se aplican conceptos y ecuaciones para identificar y explicar los fenómenos físicos asociados y en situaciones relacionadas a la ingeniería a partir de diferentes fuentes de información y datos. En el aula se procede principalmente a:
 - a) Resolución de ejercicios representativos, a cargo de los docentes, con discusiones sobre temas del programa y demostraciones.
 - b) Resolución de ejercicios, a cargo de los alumnos, en forma autónoma, individual o grupal.
- III. Trabajos prácticos de laboratorio en instalaciones experimentales (2 horas por semana), para grupos reducidos. Se utiliza una guía de trabajo experimental en estrecha relación con los contenidos de las clases teórico-prácticas. Se revisan los conceptos en forma general y con la

mediación y asesoramiento de un docente a cargo se discuten las actividades experimentales en grupos reducidos de trabajo. En el espacio del laboratorio se procede principalmente a:

- a) Discusiones iniciales guiadas.
- b) Desarrollo de experiencias.
- c) Síntesis y discusión.
- IV. Tareas fuera de los espacios antes mencionados. Propuestas de actividades guiadas:
 - a) a) Conformación de un ecosistema mediado por TIC para interrelaciones docentes-alumnos y alumnos-alumnos.
 - b) Estudio y trabajo autónomo individual o grupal, lecturas complementarias, consultas bibliográficas y resolución de ejercicios.
 - c) Consultas presenciales y/o virtuales con docentes en espacios y horarios convenidos.
 - d) Producción de informes de los trabajos prácticos, individual o grupal.
 - e) Devolución, revisión y discusión de resultados de los evaluativos semanales.

Distribución de actividades:

- I. Clases plenarias teórico-prácticas interactivas en anfiteatro. Actividad obligatoria.
- II. Clases prácticas en aulas para grupos reducidos. Se forman varias comisiones en distintos espacios y horarios. En el aula, los docentes impulsan la conformación de grupos de alumnos y el aprendizaje cooperativo. Actividad obligatoria.
- III. Trabajos prácticos de laboratorio en instalaciones experimentales, para grupos reducidos. Se forman varias comisiones. Actividad netamente experimental, obligatoria.
- IV. Tareas fuera de los espacios antes mencionados. Tareas guiadas, sugeridas.

Mecanismos de seguimiento de los aprendizajes:

En las aulas y laboratorio:

- I. En las clases plenarias teórico-prácticas interactivas en anfiteatro: Se aplican herramientas de encuestas y preguntas breves, insertadas en la dinámica de la clase. Se comparte con los alumnos las respuestas y se fomentan debates inter-estudiantes. Antes de terminar el horario de clase, se toma un autoevaluativo, mediado por TIC, individual y de corta duración (15 minutos). A su término, se discuten inmediatamente los resultados del autoevaluativo.
- II. En las clases prácticas en aulas para grupos reducidos: Seguimiento y acompañamiento continuo por parte de los docentes en el aula de las clases prácticas, para detectar y subsanar dificultades en el proceso de aprendizaje de los alumnos. Al final de la clase se toma un evaluativo del tema global de la práctica. La evaluación es con conformación de grupos reducidos de 3 a 4 alumnos y de 30 minutos de duración. Hay un seguimiento, debate y devolución de los evaluativos semanales.
- III. En los trabajos prácticos de laboratorio en instalaciones experimentales para grupos reducidos: Se realiza un seguimiento continuo del docente a cada grupo de trabajo, guiando en la selección del instrumental adecuado, controlando las conexiones y supervisando el desarrollo de las experiencias. Las interacciones docente-alumno, guiando y monitoreando las actividades, otorgando pistas y

orientando el logro de los objetivos constituyen un mecanismo típico para facilitar un aprendizaje activo. También contribuyen al mismo las interacciones entre pares durante las actividades.

En las reuniones semanales de los equipos docentes -contando con los resultados de la evaluación continua semanal- se analiza y se debate sobre la evolución y desempeño de los estudiantes.

Recursos empleados

Espacios:

- Anfiteatros con capacidad para 230 y 300 personas. Anfiteatros A2 y B2.
- Aulas con capacidad para 50 personas con pupitres individuales. Aulas 1-1-1 al 1-1-6.
- Laboratorio de física experimental con mesones equipados para trabajo en grupos. (1-0-12)

Equipos:

- Instrumental y herramientas variadas para el desarrollo de experiencias de laboratorio de física experimental.
- Dispositivos simples para demostraciones en clase.

Medios tecnológicos:

- Computadoras portátiles.
- Proyectores multimedia
- Videos y programas libres para simulaciones en aula virtual y en clase presencial.
- Aula virtual extendida FACET Virtual, plataforma Moodle.
 https://facetvirtual.facet.unt.edu.ar/enrol/index.php?id=817#tabs-tree-start

Evaluación

Método/s empleados:

Evaluación individual escrita

Evaluativos teóricos de seguimiento: Entrega de trabajos de laboratorio, individuales o grupales, Autoevaluación individual con celular en anfiteatro. Evaluación escrita grupal de trabajos prácticos.

Condiciones para la aprobación directa de la Actividad Curricular:

Tendrán aprobada Física III, los alumnos con inscripción validada en el Sistema de Gestión Académica de la UNT y que cumplan con las siguientes condiciones en el cursado de las 16 semanas de clases:

- 80% de asistencia a las clases teórico-prácticas y 80% de asistencia a las clases prácticas
- 80% de aprobación de los autoevaluativos periódicos en las clases teórico-prácticas
- 80% de aprobación de los evaluativos periódicos en las clases prácticas
- Aprobación con nota igual o mayor que 4 de las tres pruebas parciales
- Laboratorio aprobado

Aquellos estudiantes que no alcanzaran la aprobación directa en el periodo de cursado de 16 semanas deberán realizar las actividades diseñadas y propuestas por la asignatura en las 4 semanas adicionales de recuperación.

Correlativas académicas

- Física II
- Cálculo II
- Fundamentos de Química General

Ejes y enunciados multidimensionales y transversales

Esta Actividad Curricular aporta a los siguientes ejes y enunciados multidimensionales y transversales de la carrera en el nivel que se indica:

Ejes y enunciados multidimensionales y transversales específicos	Nivel
1. Identificación, formulación y resolución de problemas relacionados a productos, procesos, sistemas, instalaciones y elementos complementarios correspondientes a la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Estrategias de abordaje, diseños experimentales, definición de modelos y métodos para establecer relaciones y síntesis.	Вајо
2. Diseño, cálculo y proyecto de productos, procesos, sistemas, instalaciones y elementos complementarios correspondientes a la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Estrategias conceptuales y metodológicas asociadas a los principios de cálculo, diseño y simulación para la valorización y optimización.	No aporta
3. Planificación y supervisión de la construcción, operación y mantenimiento de procesos, sistemas, instalaciones y elementos complementarios donde se llevan a cabo la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Utilización de recursos físicos, humanos, tecnológicos y económicos; desarrollo de criterios de selección de materiales, equipos, accesorios y sistemas de medición y aplicación de normas y reglamentaciones.	No aporta

4. Verificación del funcionamiento, condición de uso, estado y aptitud de equipos, instalaciones y sistemas involucrados en la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y en el control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas.

No aporta

5. Proyecto y dirección de la construcción, operación y mantenimiento de procesos, sistemas, instalaciones y elementos complementarios referido a la higiene y seguridad en el trabajo y al control y minimización del impacto ambiental en lo concerniente a su actividad profesional.

No aporta

Ejes y enunciados multidimensionales y transversales	Nivel
Identificación, formulación y resolución de problemas de ingeniería	Вајо
Concepción, diseño y desarrollo de proyectos de ingeniería	No aporta
Gestión, planificación, ejecución y control de proyectos de ingeniería	No aporta
Utilización de técnicas y herramientas de aplicación en la ingeniería	Bajo
Generación de desarrollos tecnológicos y/o innovaciones tecnológicas	Bajo
Fundamentos para el desempeño en equipos de trabajo	Вајо
Fundamentos para una comunicación efectiva	Bajo
Fundamentos para una actuación profesional ética y responsable	Medio
Fundamentos para evaluar y actuar en relación con el impacto social de su actividad profesional en el contexto global y local	Bajo
Fundamentos para el aprendizaje continuo	Medio
Fundamentos para el desarrollo de una actitud profesional emprendedora	No aporta

Investigación

Proyectos de investigación relacionados a la asignatura en la que participen los docentes

- PIUNT E662 Enseñanza y Aprendizaje de la Física en el ciclo básico universitario.
- PIUNT E717 Fotoconductividad en semiconductores nanocristalinos y heteroestructuras. Una aplicación del modelo de corriente eléctrica en semiconductores como un fenómeno de transmisión de partículas.
- PIUNT E720 Sistemas Tecnológicos basados en Energías Renovables en el Noroeste Argentino:
 Herramientas de Mitigación del Cambio Climático

- PIUNT E724 Factores Ópticos y Neurales del Procesamiento Visual. Aplicaciones en salud visual y medio ambiente
- PIUNT E735 Transición energética. Ciencia y tecnología de materiales de aplicación nuclear. Diagramas de fases experimentales en aleaciones de base circonio.
- PIUNT E753 Dispositivos multifunción basados en nuevos óxidos semiconductores.
- CONICET PIP 057 Diseño y fabricación de transistores de efecto de campo multifunción