

Programa Analítico QUÍMICA ANALÍTICA I

Datos Generales

Nombre de la Actividad Curricular: Química Analítica I

Código: 15_QQD

Carrera: Ingeniería Química

Bloque de Conocimientos al que pertenece: Tecnologías Básicas

Año académico: 2025

Equipo docente

Nombre:	Cargo:	Dedicación:
Álvarez, Alejandro Raúl	Profesor Asociado	Simple
Vera van Gelderen, Eduardo	Profesor Adjunto	Semiexclusiva
Soria, Federico José	Jefe de Trabajos Prácticos	Semiexclusiva
Luque, Juan Ignacio	Jefe de Trabajos Prácticos	Exclusiva
González, Diego Alejandro	Jefe de Trabajos Prácticos	Semiexclusiva

Fundamentación

Aprender a caracterizar cuantitativamente muestras por medio de técnicas tradicionales e instrumentales. Aplicar conceptos fundamentales en la interpretación de resultados de casos de la Industria de Procesos. Adquirir destreza en el manejo de instrumental analítico.

Resultados de Aprendizaje

Al finalizar exitosamente el cursado de la actividad curricular el estudiante será capaz de:

- R.A. 1: Caracterizar muestras usando técnicas analíticas tradicionales cuali-cuantitativas
- R.A. 2: Interpretar resultados de análisis de muestras generadas en la Industria de Procesos
- R.A. 3: Manejar con destreza material y equipamiento específico de laboratorio.
- **R.A. 4:** Comprender los fundamentos de las volumetrías, de las curvas de valoración ácido-base, de precipitación y complexométricas y de los indicadores de punto final.
- **R.A. 5:** Aplicar los métodos volumétricos y gravimétricos al control de calidad de productos agroindustriales del Noroeste Argentino y para el análisis de aguas y efluentes industriales.

Contenidos

Contenidos mínimos de la Actividad Curricular:

Conceptos de química analítica general. Análisis químicos cuali y cuantitativos. Métodos de análisis

Programa Extendido

Unidad 1: INTRODUCCIÓN A LA QUÍMICA ANALÍTICA. Objetivos. Reacciones y reactivos analíticos. Escalas de Análisis. Procesos básicos del Análisis: Muestreo. Ensayos preliminares. Disolución de las muestras. Disgregación. Separación sistemática de cationes: Métodos separativos. Reacciones analíticas de los cationes. Sustancias que interfieren en el análisis de cationes. Estudio de los Aniones: Reacciones de identificación y específicas de los aniones. Preparación de la muestra para la investigación de los aniones. Unidad 2: APLICACIONES ANALÍTICAS DE VELOCIDAD DE REACCIÓN Y EQUILIBRIOS QUÍMICOS. Ley de acción de masas. Ley de Equilibrios Químicos. Equilibrios Homogéneos en disolución acuosa: Soluciones acuosas de electrolitos. Teorías Acido-Base. Aplicación de la ley del Equilibrio Químico a electrolitos débiles. Escala y cálculo de pH. Soluciones reguladoras. Hidrólisis de sales. Soluciones de anfolitos. Efecto del pH en la separación de cationes.

Unidad 3: APLICACIONES ANALÍTICAS DE EQUILIBRIO DE IONES COMPLEJOS. Formación. Constante de Estabilidad e inestabilidad. Complejos de interés analítico. Formación y destrucción de iones complejos. Aplicaciones. Equilibrios de Oxido-Reducción: Potenciales de Electrodos. Efecto de la concentración sobre los potenciales. Pilas y Equilibrios Químicos. Previsión de las reacciones.

Unidad 4: APLICACIONES ANALITICAS DE LOS EQUILIBRIOS IÓNICOS HETEROGÉNEOS. Aplicación de la Ley del Equilibrio Químico a sustancias poco solubles. Solubilidad y Producto de Solubilidad. Factores que afectan la solubilidad de los precipitados. Precipitaciones controladas. Aplicaciones en la marcha de separación.

Unidad 5: EVALUACIÓN DE LOS RESULTADOS ANALÍTICOS. Tipos de errores. Reglas para la presentación de los datos. Tratamiento estadístico de los datos. Precisión y exactitud. Distribución normal. Límite de confianza. Desprecio de una observación. Diagramas de control.

Unidad 6: ANÁLISIS CUANTITATIVO. Clasificación de los métodos cuantitativos, Reacciones y reactivos a emplear en Análisis Cuantitativo. Métodos Volumétricos: Reacciones volumétricas: requisitos. Clasificación de los métodos volumétricos. Soluciones patrones. Cálculos en análisis volumétrico. Material volumétrico. Efecto de la temperatura sobre la medición de volumen.

Unidad 7: VOLUMETRÍA ÁCIDO-BASE EN DISOLUCIÓN ACUOSA. Teoría de la Acidimetría y Alcalimetría. Curvas de valoración. Indicadores. Aplicaciones de la Acidimetría y Alcalimetría.

Unidad 8: VOLUMETRÍAS DE OXIDO-REDUCCIÓN. Equivalentes. Curvas de valoración. Indicadores. Permanganometría: Preparación y valoración de la solución de Permanganato de Potasio. Aplicaciones. Dicromatometría: Preparación de la solución de Dicromato de Potasio. Determinación de sal ferrosa. Iodo-lodimetría: Preparación y valoración de la solución de lodo. Determinación de Trióxido de Arsénico.

Unidad 9: VOLUMETRÍAS DE PRECIPITACIÓN. Comparación con el Análisis Gravímétrico. Curvas de valoración. Indicadores. Argentimetría: Determinación de Cloruros por los métodos de Mohr, Volhard y Fajans.

Unidad 10: VOLUMÉTRICAS DE FORMACIÓN DE COMPLEJOS Teoría de las volumetrías complexométricas. Curvas de valoración. Métodos de detección del punto final. Titulaciones con EDTA. Determinación de la dureza de! agua. Complejimetría: Método de Liebig. Modificación de Denigés. Determinación de cloruros y cianuros. Determinación de cobre y de níquel.

Unidad 11: VOLUMETRÍA ACIDO-BASE EN DISOLUCIÓN NO ACUOSA. Teorías modernas sobre Ácidos y Bases. Clasificación y propiedades de los solventes. Titulación en solventes básicos. Valoraciones en medio de Ácido Acético glacial.

Unidad 12: ANÁLISIS GRAVIMÉTRICO. Clasificación de los métodos gravimétricos. Gravimetría de precipitación. Determinaciones gravimétricas: agua, cloruros, hierro, sulfato y níquel. Formación v Propiedades de los Precipitados: Diagramas de solubilidad. Formación de los precipitados. La condición coloidal: propiedades y fenómenos de adsorción. Lavado de precipitados coloidales. Formación de Cristales: Formación de núcleos y crecimiento de los cristales. Solubilidad y tamaño de las partículas. Contaminación de los precipitados. Precipitación homogénea. Disminución de la contaminación de los precipitados.

Unidad 13: TÉCNICAS SEPARATIVAS. Definición y clasificación. Separaciones por extracción. Ley de distribución. Separación extractiva de metales. Extracción de quelatos.

Trabajos Prácticos de Laboratorio

- TP.1: Separación e identificación de cationes.
- TP.2: Análisis de una muestra de aniones
- TP.3: Investigación de una muestra desconocida de cationes y aniones, aplicación al análisis de incrustaciones de calderas, columnas de destilación y de sistemas de enfriamiento.
- TP.4: Gravimetría por volatilización: Determinación de Humedad de sales.
- TP.5: Determinación de una muestra desconocida de ácido
- TP.6: Determinación de vinagre. Determinación de acidez de jugo de limón. Determinación de mezclas de Na₂CO₃ y NaHCO₃
- TP.7: Determinación de cloruros por métodos de Mohr, Volhard y Fajans.
- TP.8: Determinación de hierro por permanganatometría y dicromatometría
- TP.9: Determinación de calcio y agua oxigenada por permanganatometría
- TP.10: Determinación de clorógenos por volumetrías redox
- TP.11: Determinación de dureza de agua por complexometría.
- TP.12: Determinación de trióxido de arsénico por iodo-iodimetría. Determinación del contenido de aceite esencial en limón por el método de Scott-Veldhuis
- TP.13: Determinación gravimétrica de sulfatos en vinaza
- TP.14: Determinación de KCN por el método de Liebig-Denigés. Determinación de Cu.

Bibliografía

- Douglas A. Skoog, F. James Holler y Stanley R. Crouch.—Fundamentos de Química Analítica- México Cengage Learning, 2016: 8va. ed. Biblioteca FACET
- Douglas A. Skoog, Donald M. West F. James Holler Química Analítica, México-Buenos Aires McGraw-Hill ,.2001. 7ma Ed.. Biblioteca FACET
- María Isabel Gómez del Río, Fundamentos y problemas básicos de equilibrios en química analítica,
 2013, elibro.net.
- Luque J., Vera Van Gelderen E., Soria F., Gonzalez D. y Alvarez A.- Apuntes de Química Analítica –
 FACET UNT 2023. Cátedra de Química Analítica I.
- Gallego Picó, Alejandrina, Experimentación en Química Analítica, 2012, UNED, elibro.net

Carga horaria

Carga horaria total de la Actividad Curricular: 128

Carga horaria de Tecnologías Básicas: 128

Duración del dictado en semanas para aprobación directa: 16

Duración del dictado en semanas de recuperación: 4

Carga horaria total destinada a las actividades de formación práctica supervisada (Trabajos prácticos de resolución de problemas y Laboratorio): **96**

Metodología aplicada

Plan de actividades:

- Clases teórico-prácticas. Desarrollo de los aspectos de la teoría aplicados a problemas. Se resuelven y discuten aplicaciones.
- Clases de problemas. Resolución de problemas de cálculo y aplicación de los mismos al análisis y control de calidad,
- Experiencias escala laboratorio. Experimentación con grupos reducidos de alumnos (comisiones de 2 alumnos) en técnicas cualitativas y cuantitativas, volumétricas y gravimétricas, aplicadas al análisis de aguas, efluentes industriales, incrustaciones de calderas, y al control de calidad de productos agroindustriales de la Región NOA.

Distribución de actividades:

Las clases teórico-prácticas y prácticas de problemas requieren de una asistencia del 80% y las prácticas de laboratorio requieren una asistencia del 100 %. Se conforman grupos de 2 alumnos para realizar las prácticas de laboratorio.

Mecanismos de seguimiento de los aprendizajes:

Los alumnos deben presentar en forma virtual informes de los prácticos de problemas y rendir en forma presencial evaluaciones escritas de problemas. Antes de los prácticos de laboratorio son evaluados en forma escrita sobre los fundamentos y metodología de cada práctico. Deben aprobar dos exámenes parciales teórico prácticos y rendir un examen integrador para aprobar la materia.

Recursos empleados

Espacios:

- Laboratorio de Química Analítica I 4-3-12
- Aula 4-0-1 Disponible con proyector multimedia y acceso a red informática

Equipos:

• Material de vidrio, balanza analítica, mufla, estufa, campana de extracción de gases.

Medios tecnológicos:

Aula extendida en FACET Virtual https://facetvirtual.facet.unt.edu.ar/enrol/index.php?id=11

Evaluación

Método/s empleados:

Evaluación individual escrita, Evaluación individual oral, Entrega de trabajos prácticos escritos, individuales o grupales

Condiciones para la aprobación de la Actividad Curricular:

- 1. Asistir al menos al 80% de las clases teórico prácticas
- 2. Asistir al menos al 80% de las clases prácticas de problemas.
- 3. Asistir al 100% de las prácticas de laboratorio.
- 4. Aprobar las evaluaciones escritas de problemas
- 5. Aprobar dos parciales teórico-prácticos
- 6. Aprobar un examen integrador.

Correlativas académicas

Cálculo I

Química General e Inorgánica

Ejes y enunciados multidimensionales y transversales

Esta Actividad Curricular aporta a los siguientes ejes y enunciados multidimensionales y transversales de la carrera en el nivel que se indica:

Ejes y enunciados multidimensionales y transversales específicos	Nivel
1. Identificación, formulación y resolución de problemas relacionados a productos, procesos, sistemas, instalaciones y elementos complementarios correspondientes a la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Estrategias de abordaje, diseños experimentales, definición de modelos y métodos para establecer relaciones y síntesis.	Alto
2. Diseño, cálculo y proyecto de productos, procesos, sistemas, instalaciones y elementos complementarios correspondientes a la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Estrategias conceptuales y metodológicas asociadas a los principios de cálculo, diseño y simulación para la valorización y optimización.	No aporta
3. Planificación y supervisión de la construcción, operación y mantenimiento de procesos, sistemas, instalaciones y elementos complementarios donde se llevan a cabo la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Utilización de recursos físicos, humanos, tecnológicos y económicos; desarrollo de criterios de selección de materiales, equipos, accesorios y sistemas de medición y aplicación de normas y reglamentaciones.	No aporta
4. Verificación del funcionamiento, condición de uso, estado y aptitud de equipos, instalaciones y sistemas involucrados en la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y en el control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas.	Medio
5. Proyecto y dirección de la construcción, operación y mantenimiento de procesos, sistemas, instalaciones y elementos complementarios referido a la higiene y seguridad en el trabajo y al control y minimización del impacto ambiental en lo concerniente a su actividad profesional.	No aporta

Ejes y enunciados multidimensionales y transversales	Nivel
Identificación, formulación y resolución de problemas de ingeniería	Alto
Concepción, diseño y desarrollo de proyectos de ingeniería	Вајо
Gestión, planificación, ejecución y control de proyectos de ingeniería	Вајо
Utilización de técnicas y herramientas de aplicación en la ingeniería	Medio
Generación de desarrollos tecnológicos y/o innovaciones tecnológicas	No aporta
Fundamentos para el desempeño en equipos de trabajo	Medio
Fundamentos para una comunicación efectiva	Medio
Fundamentos para una actuación profesional ética y responsable	No aporta
Fundamentos para evaluar y actuar en relación con el impacto social de su actividad profesional en el contexto global y local	No aporta
Fundamentos para el aprendizaje continuo	No aporta
Fundamentos para el desarrollo de una actitud profesional emprendedora	No aporta

Investigación

Proyectos de investigación relacionados a la asignatura en la que participen los docentes

- Obtención de productos con alto valor agregado a partir de materias primas agroindustriales del Noroeste Argentino, PIUNT E702
- Uso sustentable de agua y energía en industrias de procesos, Desarrollo experimental de procesos químicos. PUNT E723

Proyectos de investigación relacionados a la asignatura en la que participen los estudiantes

 Obtención de productos con alto valor agregado a partir de materias primas agroindustriales del Noroeste Argentino PIUNT E702