

Programa Analítico QUÍMICA ANALÍTICA II

Datos Generales

Nombre de la Actividad Curricular: Química Analítica II

Código: 15_QQH

Carrera: Ingeniería Química

Bloque de Conocimientos al que pertenece: Tecnologías Básicas

Año académico: 2025

Equipo docente

Nombre:	Cargo:	Dedicación:
Álvarez, Alejandro Raúl	Profesor Asociado	Simple
Vera van Gelderen, Eduardo	Profesor Adjunto	Semiexclusiva
Soria, Federico José	Jefe de Trabajos Prácticos	Semiexclusiva
Luque, Juan Ignacio	Jefe de Trabajos Prácticos	Exclusiva
González, Diego Alejandro	Jefe de Trabajos Prácticos	Semiexclusiva

Fundamentación

Aprender a caracterizar cuantitativamente muestras por medio de técnicas tradicionales e instrumentales. Aplicar conceptos fundamentales en la interpretación de resultados de casos de la Industria de Procesos. Adquirir destreza en el manejo de instrumental analítico.

Resultados de Aprendizaje

Al finalizar exitosamente el cursado de la actividad curricular el estudiante será capaz de:

- R.A. 1: Caracterizar muestras usando técnicas analíticas instrumentales.
- R.A. 2: Interpretar resultados de análisis de muestras generadas en la Industria de Procesos.
- R.A. 3: Comprender el fundamento de los métodos instrumentales de análisis.
- R.A. 4: Manejar con destreza el instrumental analítico.
- R.A. 5: Seleccionar el método instrumental más adecuado.
- **R.A. 6:** Aplicar los métodos instrumentales al control de calidad de productos industriales del Noroeste Argentino y para el análisis de aguas y efluentes industriales.

Contenidos

Contenidos mínimos de la Actividad Curricular:

Análisis químico instrumental. Métodos electrométricos, espectrométricos, espectrofotométricos y cromatográficos.

Programa Extendido

Unidad 1: INTRODUCCIÓN AL ANÁLISIS INSTRUMENTAL. Fundamentos del Análisis Instrumental - Los instrumentos para el análisis y el control químico - Componentes principales y elementos auxiliares en los mismos - Términos y definiciones que ubican el alcance de las mediciones: "rango" y "span" - Características estáticas y dinámicas - Error instrumental – Criterios para seleccionar un método analítico - Ruido químico e instrumental – Tipos de ruido instrumental - Relación señal/ruido – Filtros paso alto y paso bajo – Promediación de señales - Clasificación general de los métodos instrumentales de análisis – Clasificación de los métodos electrométricos.

Unidad 2: INTRODUCCIÓN A LA POTENCIOMETRÍA. Métodos potenciómetricos - Ecuación de Nernst - Potenciales de electrodos - Diversos tipos de electrodos - Electrodos de referencia. Titulaciones potenciométricas: teoría general - El titrímetro: fundamentos sobre su funcionamiento - Titulaciones potenciométricas en volumetría de precipitación, redox y de neutralización: error teórico de titulación.

Unidad 3: INSTRUMENTACIÓN QUÍMICA. Circuitos básicos para instrumentos analíticos - Mediciones potenciométricas: método de Poggendorf, puente Student, voltímetro electrónico, multimeter (tester). Fuente de alimentación - Componentes electrónicos: diodos, triodos y semiconductores - Circuito básico de un potenciómetro electrónico - Amplificadores operacionales y sus aplicaciones a los instrumentos — Circuito derivador — Circuito de tituladotes automáticos.

Unidad 4: POTENCIOMETRÍA DIRECTA. Electrodos de ión selectivo o de plón — Distintos tipos de electrodos: membrana líquida, membrana sólida amorfa y cristalina, transistor de efecto de campo, sonda de gases. El pH - Diversos métodos instrumentales de medición de pH - El electrodo de vidrio - El pHmetro: manejo, calibración del mismo, circuito básico - Alcances y limitaciones del pH - Equilibrios químicos donde el pH se comporta como parámetro fundamental: a) en soluciones tampones y b) en el potencial redox o rH.

Unidad 5: CONDUCTIMETRÍA. Conductimetría: generalidades, número de transporte, movilidad iónica, conductancia específica, conductancia equivalente — Aplicaciones directas de la conductimetría a la determinación de minerales: aguas, azúcar, miel. Titulaciones conductimétricas: distintos casos - Circuito básico: elementos de amplificación y detección en un conductimetro - Celdas - Aplicaciones de la conductimetría.

Unidad 6: VOLTAMPEROMETRÍA. Métodos voltamperométricos - Polarización de electrodos - Polarización galvánica y química — Clasificación de los métodos voltamperométricos. Fundamentos teóricos de la polarografía - Ecuación de la onda polarográfica - Potencial de media onda - Celdas y electrodos - Circuito polarográfico básico. Polarografía de Heyrovsky - Ecuación de Ilkovic: factores que influyen en la corriente

de difusión - Métodos de análisis: técnicas diversas. Voltamperometría de impulso: fundamento, ventajas y aplicaciones. Voltamperometría de redisolución anódica: aplicación al análisis de trazas.

Unidad 7: INTRODUCCIÓN A LA ESPECTROMETRÍA. Métodos basados en la interacción con la energía radiante - Principios fundamentales - Espectros atómicos y su relación con la estructura atómica - Espectros de absorción molecular – Absorción en el Ultravioleta, Visible y en el Infrarrojo - Procesos de relajación: fluorescencia y fosforescencia.

Unidad 8: INSTRUMENTACIÓN EN ESPECTROMETRÍA. Instrumentación – Partes principales – Esquema de los diferentes espectrómetros de absorción y emisión molecular, de absorción atómica y emisión atómica. Fuentes de radiación: continuas y discontinuas. Descripción de los diferentes tipos. Monocromadores: dispersión por prismas y redes de difracción - Poder de resolución y ancho de banda espectral. Detectores: fototubos, fotoceldas, tubo fotomultiplicador, array de diodos, detectores térmicos.

Unidad 9: ESPECTROFOTOMETRÍA DE ABSORCIÓN MOLECULAR. Espectrofotometría de absorción molecular. Teoría básica: Ley de Beer — Desviaciones a la ley de Beer — Determinación de la longitud de onda óptima de trabajo — Ajuste de 0 y 100 % de transmitancia — Calibración del selector de longitudes de onda. Error fotométrico: función error — Curva de Twymann Lothian - Espectrofotometría diferencial: métodos de alta absorbancia, baja absorbancia y máxima exactitud. Espectrofotometría UV-Visible: generalidades - Instrumentación - Equipos de simple y de doble haz- Diferentes métodos de cuantificación — Espectrofotometría derivada. Espectrofotometría de infrarrojo (I.R.) - Generalidades: fuentes, detectores - Instrumentos - Aplicaciones - Espectrometría de Transformada de Fourier (IR/TF): conceptos generales — Espectrofotometría de Infrarrojo Cercano (NIR).

Unidad 10: ESPECTROFOTOMETRÍA DE ABSORCIÓN ATÓMICA. Espectrofotometría de Absorción Atómica: fundamentos. Fuentes de atomización: llama y horno de grafito, comparación de ambas – Instrumentación: lámpara de cátodo hueco y sin electrodos, monocromadores, detectores – Interferencias químicas y espectrales - Preparación de la muestra – Sistema de generación de hidruros – Aplicaciones.

Unidad 11: ESPECTROMETRÍA DE EMISIÓN ATÓMICA. Espectroscopía de Emisión atómica: fotometría de llama - Instrumentación – Aplicaciones. Espectrometría de emisión con fuentes de arco, chispa y plasma acoplado inductivamente - Descripción del equipo - Límites de detección - Comparación con absorción atómica.

Unidad 12: INTRODUCCIÓN A LOS MÉTODOS CROMATOGRÁFICOS. Cromatografía: generalidades - Clasificación. Cromatografía de elución en columna - Constante de partición - El factor de capacidad - La selectividad - El Ensanchamiento de bandas - Teoría cinética de la cromatografía - Eficiencia de la columna - Ecuación y curvas de Van Deemter - Resolución de picos - El problema general de la elución.

Unidad 13: CROMATOGRAFÍA GASEOSA. Cromatografía en fase gaseosa: distintos tipos. Cromatografía gas-líquido: sistemas de inyección de la muestra - Columnas capilares y rellenas - Distintas fases estacionarias. Detectores: distintos tipos y principio de funcionamiento (TCD, FIC, ECD, NPD) - Elución con programación de la temperatura - Automuestreadores - Preparación de la muestra - Determinación de compuestos volátiles mediante "headspace" - Aplicaciones.

Unidad 14: CROMATOGRAFÍA LÍQUIDA DE ALTA RESOLUCIÓN (HPLC). Cromatografía en fase líquida: diferentes tipos. Cromatografía líquida de alta resolución (HPLC): generalidades - Sistemas de bombeo -

Sistemas de inyección de muestra - Columnas- Distintos tipos de detectores - Métodos acoplados: HPLC-MS - Fases móviles y estacionarias - Elución con gradiente - Aplicaciones.

Trabajos Prácticos de Laboratorio

- T.P.1: Titulación potenciométrica redox. Registro de curvas de titulación y sus derivadas 1ra y 2da.

 Determinación de vitamina C en jugo de limón.
- T.P.2: Titulación potenciométrica de volumetría de precipitación. Aplicación a la determinación de cloruros en vinaza.
- T.P.3: Titulación potenciométrica de neutralización. Aplicación a la determinación de acidez en jugo de limón y ácido fosfórico en bebidas cola, y determinación de nitrógeno amínico en jugo.
- T.P.4: Gráfica de FEM vs. pH- Manejo y calibración del pHmetro.
- T.P..5: Conductimetría Manejo y calibración de un conductímetro. Aplicación a la determinación de sólidos totales disueltos en agua, cenizas en azúcar y de ácido acetil salicílico en aspirina.
- T.P.6: Determinación electrogravimétrica de cobre.
- T.P.7: Polarografía cualitativa y cuantitativa. Aplicación a la determinación de cadmio en agua.
- T.P.8: Espectrofotometría de visible. Aplicación en determinación de la DQO de un residual industrial.
- T.P.9: Espectrofotometría visible: determinación de color en azúcar y color en cerveza.
- T.P.10: Espectrofotometría visible: determinación de antocianinas en frutillas y arándanos.
- T.P.11: Espectrofotometría de U.V.: determinación de nitratos en agua. Determinación de la línea CD en aceite esencial de limón.
- T.P.12: Espectrometría de emisión atómica: determinación de Na y K en agua, vinaza y jugos cítricos.
- T.P.13: Cromatografía gaseosa (GC). Determinación del perfil cromatográfíco del aceite esencial de limón.
- T.P.14: Cromatografía líquida de alta resolución (HPLC): obtención del cromatograma y su interpretación. Determinación de cafeína en bebidas e infusiones.

Bibliografía

- Douglas A. Skoog, F. James Holler y Stanley R. Crouch.-- Principios de análisis instrumental: México Cengage Learning, 2018, 7ma. ed. Biblioteca FACET
- Douglas A. Skoog , F. James Holler y Stanley R. Crouch.-- Principios de análisis instrumental: México Cengage Learning, 2008 6ta. ed. Biblioteca FACE
- Douglas A. Skoog, Donald M. West F. James Holler Química analítica, México-Buenos Aires McGraw-Hill /c.2001. Biblioteca FACET
- Alvarez A., Jorrat S. y Aguirre J.- ANALISIS INSTRUMENTAL Vol. I y Vol. II Asoc. Coop. de la FaCET UNT
 2019. Biblioteca Cátedra de Química Analítica II.
- Raquel Moreno Bermejo, Antonio Moreno Ramírez, Análisis Instrumental, Ed. Síntesis, Madrid, 2014.
- Torres Cartas Sagrario, Gómez Benito Carmen, Análisis Instrumental: Manual de Laboratorio, Editorial
 Univ. Politécnica de Valencia, 2017, elibro.net
- Zumbado Fernández, Héctor, Análisis Instrumental de los Alimentos, Editorial Universitaria La Habana,
 2021, elibro.net.

 American Water Works Association/American Public Works Association/Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 21 Edition, MC GRAW HILL- 2005.

Carga horaria

Carga horaria total de la Actividad Curricular: 96

Carga horaria de Tecnologías Básicas: 96

Duración del dictado en semanas para aprobación directa: 16

Duración del dictado en semanas de recuperación: 4

Carga horaria total destinada a las actividades de formación práctica supervisada (Trabajos prácticos de resolución de problemas y Laboratorio): **64**

Metodología aplicada

Plan de actividades:

- Clases teórico-prácticas. Desarrollo de los aspectos de la teoría aplicados a problemas. Se resuelven y discuten aplicaciones.
- Clases de problemas. Resolución de problemas de cálculo y aplicación de los mismos al análisis y control de calidad,
- Experiencia escala laboratorios. Experimentación con grupos reducidos de alumnos (comisiones de 5 alumnos) en técnicas instrumentales de análisis aplicada al análisis de aguas, efluentes industriales, y al control de calidad de productos industriales de la Región NOA (azúcar, cítricos, alcohol, cerveza, gaseosas, berries)

Distribución de actividades:

La asistencia a las clases teórico-prácticas y prácticos de problemas debe ser del 80%, a los prácticos de laboratorio la asistencia debe ser del 100%.

Mecanismos de seguimiento de los aprendizajes:

Los alumnos deben presentar en forma virtual informes de los prácticos de problemas y de los prácticos de laboratorio. Deben aprobar tres exámenes parciales teórico prácticos y un examen integrador.

Recursos empleados

Espacios:

Laboratorio con instrumental analítico (4-4-16) Aula con proyector multimedia y acceso a red informática (4-0-1)

Equipos:

- Balanza, estufa, pipetas automáticas, material de vidrio.
- Espectrofotómetros UV/Vis, pHmetro, conductímetro.
- Titulador automático, polarógrafo.
- Cromatógrafos Gaseoso y Liquido (disponibles en laboratorios de la FACET).

Medios tecnológicos:

Aula extendida en FACET Virtual

Evaluación

Método/s empleados:

Evaluación individual escrita, Evaluación individual oral, Entrega de trabajos prácticos escritos, individuales o grupales, Entrega de trabajos de laboratorio, individuales o grupales

Condiciones para la aprobación de la Actividad Curricular:

- 1. Los alumnos deben presentar en forma virtual en la Plataforma los prácticos de problemas,
- 2. Los alumnos deben presentar en forma virtual en la Plataforma los informes de laboratorio.
- 3. Deben aprobar tres parciales teórico prácticos
- 4. Deben aprobar un examen integrador.
- 5. Los parciales y el examen integrador tienen una instancia de recuperación.

Correlativas académicas

Química Analítica I Física III (regular) Probabilidad y Estadística

Ejes y enunciados multidimensionales y transversales

Esta Actividad Curricular aporta a los siguientes ejes y enunciados multidimensionales y transversales de la carrera en el nivel que se indica:

Ejes y enunciados multidimensionales y transversales específicos	Nivel
1. Identificación, formulación y resolución de problemas relacionados a productos, procesos, sistemas, instalaciones y elementos complementarios correspondientes a la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Estrategias de abordaje, diseños experimentales, definición de modelos y métodos para establecer relaciones y síntesis.	Alto
2. Diseño, cálculo y proyecto de productos, procesos, sistemas, instalaciones y elementos complementarios correspondientes a la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Estrategias conceptuales y metodológicas asociadas a los principios de cálculo, diseño y simulación para la valorización y optimización.	No aporta
3. Planificación y supervisión de la construcción, operación y mantenimiento de procesos, sistemas, instalaciones y elementos complementarios donde se llevan a cabo la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y al control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas. Utilización de recursos físicos, humanos, tecnológicos y económicos; desarrollo de criterios de selección de materiales, equipos, accesorios y sistemas de medición y aplicación de normas y reglamentaciones.	No aporta
4. Verificación del funcionamiento, condición de uso, estado y aptitud de equipos, instalaciones y sistemas involucrados en la modificación física, energética, fisicoquímica, química o biotecnológica de la materia y en el control y transformación de emisiones energéticas, de efluentes líquidos, de residuos sólidos y de emisiones gaseosas.	Medio
5. Proyecto y dirección de la construcción, operación y mantenimiento de procesos, sistemas, instalaciones y elementos complementarios referido a la higiene y seguridad en el trabajo y al control y minimización del impacto ambiental en lo concerniente a su actividad profesional.	No aporta

Ejes y enunciados multidimensionales y transversales	Nivel
Identificación, formulación y resolución de problemas de ingeniería	Alto
Concepción, diseño y desarrollo de proyectos de ingeniería	Bajo
Gestión, planificación, ejecución y control de proyectos de ingeniería	Bajo
Utilización de técnicas y herramientas de aplicación en la ingeniería	Medio
Generación de desarrollos tecnológicos y/o innovaciones tecnológicas	No aporta
Fundamentos para el desempeño en equipos de trabajo	Medio
Fundamentos para una comunicación efectiva	Medio
Fundamentos para una actuación profesional ética y responsable	No aporta
Fundamentos para evaluar y actuar en relación con el impacto social de su actividad profesional en el contexto global y local	No aporta
Fundamentos para el aprendizaje continuo	No aporta
Fundamentos para el desarrollo de una actitud profesional emprendedora	No aporta

Investigación

Proyectos de investigación relacionados a la asignatura en la que participen los docentes

- Obtención de productos con alto valor agregado a partir de materias primas agroindustriales del Noroeste Argentino, PIUNT E702
- Uso sustentable de agua y energía en industrias de procesos, Desarrollo experimental de procesos químicos. PUNT E723

Proyectos de investigación relacionados a la asignatura en la que participen los estudiantes

 Obtención de productos con alto valor agregado a partir de materias primas agroindustriales del Noroeste Argentino PIUNT E702