San Miguel de Tucumán, 3 1 AGO 2009

VISTO el Ref. Nº 1/09 del Expte. Nº 62.070/85 por el cual el Consejo Directivo de la Facultad de Ciencias Exactas y Tecnología, mediante Res. Nº 453/09 solicita la aprobación del nuevo Reglamento de la Carrera de Posgrado "Maestria en Ingenieria

CONSIDERANDO:

Que este Honorable Cuerpo, mediante Res. Nº 130/86, crea la mencionada Carrera, y es modificada mediante Res. Nºs 1182/88, 1337/01 y 2377/05 de este Cuerpo, y acreditada y categorizada "A" por la Comisión Nacional de Evaluación y Acreditación Universitaria (C.O.N.E.A.U.), por Res. Nº 344/99;

Que la Directora Académica de la Carrera Dra. Bibiana Luccioni, eleva a consideración el nuevo Regiamento, informando que las principales modificaciones respecto al anterior son las siguientes: actualización del listado de profesores de posgrado, actualización de contenidos mínimos y bibliografía de los cursos y flexibilidad del número de horas cursadas fuera de la carrera que pueden ser

Por ello y teniendo en cuenta lo aconsejado por el Consejo de Posgrado;

EL HONORABLE CONSEJO SUPERIOR DE LA UNIVERSIDAD NACIONAL DE TUCUMAN -En Sesión Ordinaria de fecha 11 de Agosto de 2009-RESUELVE:

ARTICULO 1º.- Aprobar el Reglamento de la Carrera de Posgrado "Maestría en Ingenieria Estructural" de la Facultad de Ciencias Exactas y Tecnologia, que como Anexo forma parte de la presente resolución.-

ARTICULO 2º.- Hágase saber, tome razón Dirección General de Títulos y Legalizaciones, incorporese al Digesto y agréguese a su antecedente.-

RESOLUCION Nº

0.09

Bespacho Consejo Superior

Dra. SUSANA H. MAIDANA

SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

fiel Cr. Juan Alberto Cerisola RECTOR

Universidad Nacional de Tucumén

ANEXO RESOLUCIÓN Nº 1783 009

Carrera de Posgrado Maestría en Ingenieria Estructural

a. Fundamentos

La formación del Ingeniero Civil apunta en general a asegurar una capacitación exclusivamente profesional de los futuros egresados. Se ha descuidado la formación de recursos humanos para integrar y mantener actualizados los cuadros de docentes e investigaciones que permitan a nuestras universidades satisfacer las necesidades de investigación y desarrollo científico-tecnológico del país. La enseñanza de cuarto nivel trae aparejada una elevación de la calidad de la enseñanza de grado, seriamente resentida en los últimos años, y permite reducir la duración de la carrera de grado al mismo tiempo que formar profesionales que responden mejor a los requerimientos del mercado. De lo expuesto anteriormente, se desprende que los principales usuarios de los recursos humanos formados en el posgrado son las universidades y los centros de investigación y desarrollo. No puede ignorarse el impacto de dichos recursos en el campo profesional, especialmente en consultorías especializadas.

b. Objetivos

b.1 Objetivos Generales

Formación de recursos humanos para la investigación científica y tecnológica, y la docencia universitaria en el área de la Ingeniería Estructural. Esta formación se logra a través de la realización de cursos de estudios, trabajos de investigación, seminarios y elaboración de tesis de postgrado.

b.2 Objetivos Especificos

Formación científica del estudiante graduado a través de la profundización de conocimientos en las disciplinas básicas de la Ingenieria Estructural e iniciación en la metodología de la investigación científica mediante la realización de una tesis dirigida.

c. Perfil del Egresado

Se espera que el egresado adquiera:

- Conocimientos profundos en las disciplinas básicas de la Ingeniería Estructural que le permitan mejorar su capacidad como docente de grado.
- Experiencia en la metodología de la investigación científica que le permita incorporarse a un proyecto de investigación.
- Capacidad para realizar trabajos profesionales de alta complejidad y asesorar en el estudio de problemas no convencionales.

Destinatarios

La carrera está destinada a Ingenieros Civiles, Ingenieros en Construcciones, Ingenieros Aereonáuticos, Ingenieros en Materiales, Ingenieros Mecánicos o Ingenieros Electromecánicos.

e. Nombre de la Carrera

MAESTRÍA EN INGENIERÍA ESTRUCTURAL.

f. Grado Académico

MAGISTER EN INGENIERIA ESTRUCTURAL

fml. Ct. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucuman

Dra. SUSANA H. MAIDANA SECRETARIA ACADEMICA

UNIVERSIDAD NACION

LIC. ADRIAN G. MORENO
ORECTOR
Despacho Conscio Superior

MATEMÁTICA PARA INGENIEROS

Espacios vectoriales reales. Transformaciones lineales y matrices. Ecuaciones lineales. Teoria general de ecuaciones diferenciales. Transformada de Laplace. Espacios Euclideanos. Convergencia de los Espacios Euclideanos. Aplicación a las ecuaciones diferenciales lineales. Series ortogonales de polinomios. Polinomios de Legendre ∮ de Hermite. Problemas de contorno para ecuaciones diferenciales ordinarias. Problemas de contorno para ecuaciones diferenciales parciales: ecuaciones de la onda y del calor.

Bibliografia

- Ben Noble, Applied Linear Algebra, Prentice Hall, 1965.
- Gilbert Strang. Algebra Lineal y sus Aplicaciones, Fondo Educativo Interamericano, 1982.
- Kreider, Kuller, Ostberg. Introducción al Análisis Lineal, Perkins. Fondo Educativo Interamericano, S.A., Mexico, 1971.
- Kreyszig E. Advanced Engineering Mathematics. John Wiley & Sons; 1998.
- Reza, Fazlollah. Los espacios lineales en la Ingeniería. Reverté, 1977.
- Weinberger, H. F. Ecuaciones Diferenciales en Derivadas Parciales. Reverté
- Novo, Rojo, Ecuaciones y Sistemas Diferenciales. McGraw- Hill (1995).
- Figueiredo, D.G. Analise de Fourier e Equacoes Diferenciais Parciais. Projeto Euclides (2000).

CÁLCULO NUMÉRICO

Teoría de errores. Resolución de Ecuaciones no Lineales. Solución Numérica de Sistemas de ecuaciones Lineales y no Lineales. Aproximación de funciones. Cuadratura numérica. Solución Numérica de Ecuaciones Diferenciales. Manejo de la biblioteca IMSL de rutinas matemáticas

Bibliografia:

- Atkinson K. An introduction to Numerical Analisys: John Wiley & Sons. New York,
- Acton F. Numerical Methods that work. 1990. New York.
- Burden y Faires. Análisis Numérico. Iberoamérica, 2002.
- Chapra S., Canale R. Métodos numéricos para ingenieros. Mc. Graw Hill, 2000.
- Curtis G., Wheatley P. Análisis Numérico con Aplicaciones. Pearson Education,
- Forsythe G., Malcoin M., Moler C.. Computer Methods for Mathematical Computations. Prentice Hall, 1977.
- Gilat A., Subramaniam V. Numerical Methods for Engineers and Scientsts, Wiley, 2008.

H. MAIDANA ARIA ACADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

frol Cr. JUAN ALBERTO CERISCLA RECTOR Universidad Nacional de Tycumán

Universidad Nacional de Tucumán Rectorado

- Kincaid, Cheney, Martinez Enriquez. Análisis Numérico: Las matemáticas del Cálculo Científico. Wilmington (U.S.A.): Addison-Wesley Iberoamericana, 1994.
- Maron M. Numerical Analysis: A Practical Approach. Mac Millan Publishing Company N.Y. 1987.
- Nagle R. K., Saff, E. B. Snider, A. D. Ecuaciones Diferenciales y problemas con valores en la frontera. Pearson 2005.

MECANICA DE LOS SÓLIDOS

Análisis Tensorial. Tensiones. Deformaciones. Ecuación de continuidad. Ecuación de Movimiento. Momento de la cantidad de movimiento. Primera y Segunda Ley de la Termodinámica. Potenciales termodinámicos. Relación tensión-deformación para materiales elásticos isótropos. Problemas de contorno. Principio de Saint Venant. Equilibrio y unicidad de las soluciones. Elasticidad plana.

Cálculo variacional. Máximos y mínimos de funciones de una o más variables. Ecuación de Euler. Lema fundamental del Cálculo Variacional. Extremos y funciones estacionarias del problema variacional. Condiciones naturales de contorno y condiciones de transición. Expresión variacional del problema de Dirichlet. Restricciones y multiplicadores de Lagrange. Puntos extremos variables. Métodos directos en los problemas variacionales.

Trabajo y energía. Principio de Deformaciones Virtuales. Principios de Fuerzas Virtuales. Potencial Total. Teorema de Castigliano. Potencial Total Complementario. Teoremas de Engesser y Castigliano II. Leyes de Betti y Maxwell. Principio de Hamilton. Funcionales cuadráticos. Métodos aproximados de Ritz y Galerkin.

<u>Bibliografia</u>

- Dym C. L., Shames I. H., "Solid Mechanics: A Variational Approach", Mc. Graw-Hill, 1973.
- Elsgoltz L., "Ecuaciones Diferenciales y Cálculo Variacional", Editorial MIR, Moscú, 1969.
- Fung Y.C., Foundations of Solids Mechanics, Prentice Hall, 1965
- Fung Y. C., "Classical and Computational Solid Mechanics (Advanced Series in Engineering Science)", World Scientific Publishing, 2005.
- Fox C., "An Introduction to the Calculus of Variations", Dover Publications Inc., New York, 1987.
- Gould S. H., "Variational Methods for Eigenvalue Problems"Dover Publications Inc., New York, 1995.
- Hildebrand F. R., "Métodos de la Matemática Aplicada", Editorial EUDEBA, Buenos Aires, 1973.
- Krasnov M.L. et al. "Cálculo Variacional Ejemplos y problemas", Editorial MIR, Moscu, 1976.
- Malvern L.E., Introduction to the Mechanics of Continuous Medium, Prentice Hall, USA, 1969.
- Maugin G. A., "The Thermomechanics of Plasticity and Fracture", Camb. Univ.Press, 1992.

DIB. SUSANA N. MAIDANA SECRETARIA/ACREMICA UNIVERSIDAR NAPIDATI E TUCUMAN INC. Gr. JUAN ALBERTO CERISOL

Froi, Gr. JUAN ALBERTO CERISOLA RECTOR Universidad Hacional de Tucumán

Universidad Nacional de Tucumán Rectorado

- Sagan H., "Introduction to the Calculus of Variations", Dover Publications Inc., New York, 1992.
- Shames I., "Mechanics of Deformable Solids", Prentice-Hall, Inc., 1964.
- Weinstock R., "Calculus of Variations with Applications to Physics and Engineering", Dover Publications Inc., New York, 1995.

MÉTODOS NUMÉRICO-COMPUTACIONALES I

La mecánica del continuo. Formulaciones diferenciales. Formulaciones integrales; princípios físicos globales, princípios variacionales.

El método de las diferencias finitas: Propiedades generales, errores, problemas de valores de contorno, aplicaciones.

Método de los residuos ponderados y variacionales

El método de elementos finitos. Formulación de elementos finitos basada en campos de desplazamientos. Partición del dominio, interpolación local, ensamble, condiciones de contorno. Criterios de convergencia. Errores. Elementos de continuidad C° y C¹. Elementos semianalíticos. Implementación numérica.

El método de los elementos de contorno. Comparación con el método de elementos finitos y aplicaciones. Conceptos básicos. Aplicación del método de los elementos de contornos a la solución de problemas de elasticidad. Implementación numérica.

Bibliografia

- Bathe, K.J., "Finite Element Procedures in Engineering Analysis". Prentice Hall, Engelwoods Cliffs, N.J., 1982.
- Crisfield M. Finite Elements and Solution Procedures for Structural Analysis, Vol
 Linear Analysis, Pineridge Press, Swansea, U. K., 1986.
- Felippa C. Apuntes de Clases de Cursos de Postgrado "Finite Element Method. Linear Analysis" de la Universidad de Colorado en Boulder.
- Hugues T.J.R. The Finite Element Method -Linear Static and Dynamic Finite Element Analysis: Prentice-Hall, 1987.
- Zienkiewicz, O.C. El Método de los Elementos Finitos Parte I y II. Mc Graw-Hill, 1980.

DINÁMICA ESTRUCTURAL I

Ecuaciones de movimiento. Sistemas de un grado de libertad: Vibraciones libres y vibraciones forzadas. Sistemas de varios grados de libertad: Vibraciones libres, modos naturales de vibración, vibraciones forzadas, método de superposición modal, integración directa de las ecuaciones de movimiento. Sistemas continuos: Vibraciones Libres. Método de superposición modal, método de la rigidez dinámica. Análisis sísmico deterministico: Espectros de respuesta, sistemas de n grados de libertad, análisis modal paso a paso, análisis modal espectral, análisis no-lineal. Interacción suelo-estructura, modelos aproximados.

DIE. SUSANA H. MAIDANA SECRETARIA ACADEMICA UNIVERSIDAO NACIONAL DE TUCUMAN

Fred Gr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional & Tucumán

<u>Bibliografia</u>

- Biggs J.M. Introduction to Structural Dynamics. McGraw-Hill, Inc., 1964
- Clough R.W. and Penzien J.Dynamics of Structures. McGraw-Hill, Inc., Second Edition, 1993.
- Chopra A. Dynamics of Structures. Theory and Applications to Earthquake Engineering. Pearson-Prentice Hall. Third Edition, 2007.
- Hurty W.C. and Rubinstein M.F. Dynamics of Structures. Prentice-Hall, Inc. 1964
- Meirovitch L. Elements of Vibration Analysis. McGraw-Hill, Inc., 1986
- Paz M., and Leigh W. Structural Dynamics: Theory and Computation. Kluwer Academic Publishers. Fifth Edition, 2004.
- Paz M. International Handbook of Earthquake Engineering Codes, Programs, and Examples. Chapman & Hall, Inc., 1994.

MODELACIÓN CONSTITUTIVA I

Ecuaciones Constitutivas. Materiales ideales. Clasificación general de los modelos constitutivos.

Fenomenología de las deformaciones plásticas. Teoría incremental de la plasticidad. Superficie de fluencia y superfície de carga plástica. Condiciones de carga/descarga. Regla de flujo plástico. Postulados de estabilidad de Drucker. Axioma de la Máxima Disipación Plástica. Métodos analíticos y numéricos para solución de problemas elastoplásticos. Aplicaciones. Teoremas fundamentales. Variables generalizadas.

Otros modelos constitutivos: Viscoelasticidad, Viscoplasticidad, Daño.

Métodos numéricos de solución. Aplicaciones

<u>Bibliografia</u>

- Chen, W.F., Plasticity in Reinforced Concrete, Mc Graw Hill, 1982.
- Crisfield, Non Linear Finite Element Analysis of Solids and Structures, Vol. I y II, John Willey & Sons, England, 1991.
- Desai, Constitutive Laws for Engineering Materials with Emphasis in Geological Materials, Prentice Hall, 1984.
- Fung Y.C., Foundations of Solids Mechanics, Prentice Hall, 1965
- Hill, R., The Mathematical Theory Of Plasticity, Oxford university Press, Ely House, London, 1967.
- Hinton y Owen, Finite Elements in Plasticity, Pineridge Press Limited, Swansea, 1980.
- Johnson, W. and Mellor P.B., Engineering Plasticity, Van Nostrand Reinhold London, 1973.
- Kachanov, L.M., Fundamentals of the Theory of Plasticity, Mir Publishers, 1974
- Kojic M., Bathe k. J., Inelastic Analysis of Solids and Structures, Computational Fluid and Solid Mechanics, Springer, 2005.

DTA. SUSATVA H. MAIDANA SECRETARIA ACADEMICA UNIVERLIDADAN CIONAL DE TUCUMAN

rel Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

- Lemaitre, J., A Course on Damage Mechanics, Spinger Verlag Berlin Heidelberg, 1996.
- Lemaitre J., Chaboche J.L., Mechanics of Solids Materials, Cambridge University Press, 2000.
- Lubliner, J., Plasticity Theory, Mc, Millan Publishing U.S.A., 1990.
- Luccioni B., Mecánica de Daño Continuo. Monografía CIMNE Nº71, Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona, España, Marzo 2003. ISBN 84-95999-19-6
- Malvern, Introduction to the Mechanics of Continuous Medium, Prentice Hall, USA, 1969.
- Maugin G.A., The Thermomechanics of Plasticity and Fracture, Cambridge University Press, 1992.
- Oller S., Fractura Mecánica. Un enfoque global, CIMNE, Barcelona, España, 2001.
- Simo and Hughes, Computational inelasticity, Interdisciplinary Applied mathematics, Springer, 1997

MECÁNICA EXPERIMENTAL

Conceptos fundamentales en la medición de esfuerzos: Extensometría mecánica. Extensometría eléctrica. Equipos de adquisición de datos. Procesamiento, registro y graficación de señales. Control de ensayos.

Análisis Dimensional. Teoría de Modelos. Detección de variables fundamentales. Teoremas. Similitud estructural.

Fotoelasticidad, Fundamentos ópticos, Equipos y modelos.

Bibliografia

- Durelli, A.J. "Applied Stress Analysis". Civil Engineering and Engineering Mechanics Series. Prentice Hall, International, Inc. (1967). U.S.A.
- Sabnis, G.M., Harris, H.G., White, R.N., Mirza, M.S. "Structural Modeling and Experimental Techniques". Prentice Hall, International, Inc. (1983). U.S.A.
- Coker & Filon. "A Treatise on Photoelasticity". Cambridge University Press (1957). U.S.A.
- Doyle J. Experimental Stress Analysis, John Wiley and Sons Ltd., Inglaterra 2004.
- Dally J. and Riley W. Experimental Stress Analysis, , Mc Graw Hill, USA, 1991.
- Frocht, M.M. "Photoelasticity", Vol.I and Vol. II. John Wiley and Sons., Inc. (1954), U.S.A.
- Hossdorf, H. "Model Analysis of Structures". Van Nostrand Reinhold Company. U.S.A. (1971).
- Bridgman P. W. Dimensional Analysis, Yale University Press, (1963).

DI SUBANA H. MAIDANA SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

frei. Gr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional & Tucumán

- Henry L. Langhaar , Dimensional Analysis and Theory of Models, Krieger Publishing Company, 1980.
- K. Hoffmann, An Introduction to Measurements using Strain gages, Hottinger Baldwin Messtechnik GmbH, Darmstadt, 1989.

SEGURIDAD DE LAS ESTRUCTURAS

Evaluación de la confiabilidad de estructuras. Incertidumbres. Teoria de la confiabilidad estructural. Clasificación de métodos de confiabilidad estructural.

Fundamentos de la teoria de probabilidades. Conceptos generales. Variables aleatorias. Vectores aleatorios. Procesos estocásticos.

Métodos de evaluación de la probabilidad de falla. Métodos de segundo momento y transformación. Métodos de integración y simulación. Límites de la probabilidad de falla para sistemas estructurales. Problemas dependientes del tiempo.

Aproximación de la respuesta estructural. Método de la superficie de respuesta. Método de interpolación local. Método de redes neuronales.

Probabilidad de falla de sistemas lineales bajo vibraciones aleatorías. Respuesta estocástica de sistemas lineales. Modelo de la estructura. Evaluación de la solicitación. Evaluación de la resistencia. Cálculo de la probabilidad de falla.

Calibración de códigos sismorresistentes. Definición de funciones de falla. Superficies de respuesta estructural. Superficies de indices de confiabilidad. Proceso de optimización: cálculo de factores parciales. Análisis con el código INPRES-CIRSOC 103. Generalización del proceso de calibración.

<u>Bibliografia</u>

- Ang, A. A-S, Tang, W.H., Probability Concepts in Engineering Planning and Design, Vol. I: Basic Principles (1975), Vol.II: Decision, Risk, and Reliability. (1984) John Wiley and Sons, Inc.
- Clough, R.W. Penzien, J. (1975). Dynamics of Structures. Mc Graw-Hill.
- Foschi, R.O., Folz, B., Yao, F., Li, H. (1998). "Software RELAN: Reliability analysis". Department of Civil Engineering, University of British Columbia, Vancouver, Canada.
- Hurtado, J. (2004). Structural Reliability Statistical Learning Perspectives.
 Lectura Notes in Applied and Computational Mechanics, Vol.17, Springer Verlag.
- Lin, Y.K. (1967). Probabilistic Theory of Structural Dynamics. Mc Graw-Hill.
- Madsen, H.O., Krenk, S., Lind, N.C. (1986). Method of Structural Safety, Prentice-Hall, Inc.
- Melchers, R.E. (1987). Structural Reliability: Analysis and Prediction Ed. Ellis Horwood Limited - Halsted Press: a division of John Wiley & Sons.
- Möller, O. (1989). "Diseño probabilistico de estructuras para depósitos de agua elevados solicitados por acción sismica". Tesis de Magister en Ingeniería Estructural, Universidad Nacional de Rosario.
- Möller, O. (2001). "Metodología para evaluación de la probabilidad de falla de estructuras sismorresistentes y calibración de códigos". Tesis de Doctorado en Ingeniería, Universidad Nacional de Rosario.

Dra. SUSANA H. MAIDANA SECRATARIA CADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

froi, Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

- Möller, O. (2008). "Seguridad de las Estructuras". Apunte para el curso de Posgrado
- Newland, D.E. (1975). Random Vibration and Spectral Analysis. Longman Group Ltd. London.
- Thoft Christensen, P., Baker, M.J. (1982). Structural Reliability Theory and Its Applications. Springer Verlag, Berlin Heidelberg, New York.

DISEÑO DE EXPERIMENTOS Y ANALISIS DE DATOS

Estadística. Etapas de un estudio estadístico. El papel del diseño experimental. Población y muestra. Sesgo de muestreo. Métodos de muestreo. Estimación, errores de estimación. Intervalos de confianza. Determinación del tamaño muestral. Contraste de hipótesis para una y dos poblaciones. Comparación de más de dos poblaciones. Comparaciones múltiples. Diseño de experimentos. Análisis de regresión.

<u>Bibliografia</u>

- Box, E. P., Hunter, W.G., Hunter, J.S. Estadística para Investigadores. Reverté, 2008.
- Kish, Leslie. Muestreo de encuestas. Editorial Trillas. (1979).
- Miller y Freund. Probabilidad y Estadística para ingenieros. Prentice-Hall
 Hispanoamericana (1997)
- Peña, Daniel. Estadística Modelos y Métodos 2. Modelos y Series Temporales.
- Peña y Romo. Introducción a la Estadística para Ciencias Sociales. McGraw-Hill. Interamericana de España (1997).
- Smith, Peter. Into Statistics. Springer (1998).
- Walpole, Myers y Myers. Probabilidad y Estadística para Ingenieros. Prentice Hall, Hispanoamericana, S.A., 1998.

Dra. SUSANA H. MAIDANA SECRETARIA ACADEMICA UNIVERSIDA NACIONAL DE TUCUMAN

> Fel. Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

TEMAS ESPECIALES DE HORMIGÓN ARMADO Y PRETENSADO

Introducción al Problema no lineal. No linealidad material. No linealidad física.

Comportamiento instantáneo y diferido de los materiales. Fluencia lenta y retracción del hormigón. Relajación del acero de pretensado. Modelos reológicos.

Análisis seccional. Diagramas momento-curvatura

Estrategias de análisis no lineal. Análisis de estructuras de barras: Método de los elementos finitos. Implementación computacional. Método matricial generalizado Análisis en el tiempo. Procesos constructivos evolutivos

<u>Bibliografia</u>

- Chen, W.F., Plasticity in Reinforced Concrete, Mc Graw Hill, 1982.
- Climent Molins "Un model per l'anàlisi del comportament resistent de construccions de maçoneria", Tesis Doctoral, Departamento de Ingeniería de la Construcción, E.T.S.I.C.C.P.B., Universidad Politècnica de Cataluña, 2003.

- Crisfield, Non Linear Finite Element Analysis of Solids and Structures, John Willey & Sons, England, 1991.
- Cruz P., Marí A., Roca P. "Nonlinear Time-Dependent Analysis of Segmentally Constructed Structures", Structural Engineering Journal, ASCE, Vol. 124, no.3, March, pp. 278-287, 1988.
- Cruz, P. "Un modelo para el análisis no lineal y diferido de estructuras de hormigón y acero construidas evolutivamente". Tesis Doctoral, Departamento de Ingeniería de la Construcción, E.T.S.I.C.C.P.B., Universidad Politécnica de Cataluña, 1994.
- Mari, A.R. "Numerical Simulation of the Segmental Construction of Three Dimensional Concrete Frames". Engineering structures, Vol. 22, Issue 6; Pags.
- Marí, A.R. "Manual del usuario del Programa CONS". Comunicación personal. Departamento de Ingeniaria de la Construcción. Universitat Politécnica de
- Murcia J. "Análisis Aproximado en el Tiempo de Secciones de Hormigón Armado en Servicio. Propuesta de un Nuevo Factor de Cálculo de Flechas Diferidas", Hormigón y Acero, no. 181, pág. 9-17, 1991.
- Pérez G.A., Bellomo F., Marí A.R., "Refuerzo de Pórticos de Hormigón Armado para mejorar su Capacidad Sismorresistente", VII Encuentro de Investigadores y Profesionales Argentinos de la Construcción EIPAC 2007, 15 al 18 de Mayo de
- Pérez G.A., Mari A.R., Danesi R.F. "Estudio experimental y numérico del comportamiento de puentes prefabricados monoviga bajo cargas de servicio", ATEP, Hormigón y Acero, nº211, pp 97-108, 1999.

DISEÑO SISMORRESISTENTE

Introducción: Conceptos de Diseño Sísmico y Recomendaciones para el Diseño Estructural.Causas y Efectos de los terrremotos: Sismicidad. Conceptos de Sismología. Respuesta Estructural, Acción Sísmica. Principios del Diseño por Capacidad. Análisis Seccional de Elementos: Relaciones de Ductilidad. Aspectos de Detallado. Pórticos de Hormigóna Armado Ductiles. Tabiques Sismorresistentes de Hormigón Armado. Sistema Pórtico Tabique. Estructuras de Hormigón Armado con Ductilidad Limitada. Fundaciones. Evaluación y Rehabilitación de Edificios de Hormigón y Mampostería

<u>Bibliografia</u>

- Applied Technology Council, Seismic Evaluation and Retrofit of Concrete Buildings. Vol.1 and Vol.2., 1996.
- Federal Emergency Management Agency, NEHRP Guidelines for the Seismic Rehabilitation of Buildings . FEMA-273, 1997.
- Park R., Paulay T. Reinforced Concrete Structures, John Wiley & Sons; 1975.
- Paulay T. and Priestly M.J.N., Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & Sons; 1992.
- Penelis G. G. and Kappos A. J. E & Fn Spon, Earthquake-Resistant Concrete Structures, Imprint of Chapman & Hall. Great Britain, 1997.

DIE. SUSANA H. MAIDANA SECRETARIA AC UNIVERSIDAD N

> cmi. Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

DINÁMICA ESTRUCTURAL II

Sistemas continuos. Métodos avanzados: introducción. Método de matrices de transferencia. Método de variables de estado. Método de elementos finitos. Método de transferencia de ecuación de rigidez (SET).

Dinámica experimental: Introducción. Sensores. Equipo de adquisición de datos. Programas de adquisición de datos. Programa VEE. Proyecto experimental

Control de vibraciones en máquinas: criterios de falla, métodos de aislación. Control de vibraciones. Objetivo y definición del problema. Sistemas de control pasivo. Amortiguadores de masa sintonizados. AMS — TMD. Amortiguadores de líquido sintonizados. TLCD.

Otras acciones dinámicas. Acciones de viento. Acciones impulsivas: impacto y

<u>Bibliografia</u>

- Den Hartog J.P. Mechanical Vibrations. McGraw-Hill, Inc., 1985.
- Ewins D. Modal Testing Theory, Practice and Application. Reserch Studies Press Ltd. 2000.
- Helsel R. Visual Programming with HP VEE. Prentice Hall, Inc. Third Edition, 1998.
- Kinney GF and Graham KJ. Explosive shocks in air. Springer Verlag, Berlin. 2nd Edition, 1985.
- Meirovitch L. Elements of Vibration Analysis. McGraw-Hill, Inc., 1986.
- Simiu E., Scanlan R.H. Wind Effects on Structures. John Wiley & Sons, Third Edition, 1996.
- Soong & Dargush. Passive Energy Dissipation Systems in Structural Engineering. John Wiley & Sons, 1997.
- The Fundamentals of Modal Testing: Application Note 243-3. Agilent Technologies, 1998.

AM, C. JUAN ALBERTO CERISOLA

SUBAAA H. MAIDANA

SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

RECTOR
Universidad Nacional de Tucumán

MÉTODOS NUMÉRICO-COMPUTACIONALES II

Tratamiento de problemas estáticos no-lineales con el Método de Elementos Finitos. No linealidad constitutiva y geométrica. Métodos de solución. Criterios de convergencia. Estructura de un programa no lineal de elementos finitos. Integración de la ecuación constitutiva. Formulaciones para Grandes deformaciones y su implementación en el Método de Elementos Finitos.

Solución de problemas dinámicos no-lineales con el método de elementos finitos. Integración en el tiempo de la ecuación diferencial del movimiento. Estabilidad en la solución.

Análisis de Transferencia de Calor: Ecuaciones fundamentales del problema. Ecuaciones incrementales. Discretización de elementos finitos y ecuaciones de transferencia de calor.

<u>Bibliografia</u>

- Bathe, K.J., "Finite Element Procedures in Engineering Analysis". Prentice Hall, Engelwoods Cliffs, N.J., 1982.
- Crisfield, M. "Non linear Finite Element Analysis of Solids and Structures". Vol. 2. Advanced Topics. Wiley. 1997.
- Hughes, T. "The Finite Element Method". Linear Static and Dynamic. Prentice-
- Zienkiewicz, O., R. Taylor, "El Método de los Elementos Finitos". Mecánica de Sólidos y Fluidos. Dinámica y No linealidad. Vol. 2. CIMNE. Barcelona. España.
- Felippa, C. Apuntes de Clases de Cursos de Postgrado "Finite Element Method. Linear Analysis" de la Universidad de Colorado en Boulder.
- Hinton y Owen, Finite Elements in Plasticity, Pineridge Press Limited, Swansea, 1980.
- Simo and Hughes, Computational Inelasticity, Interdisciplinary Applied mathematics, Springer, 1997.
- Lewis R.W., Morgan K., Thomas H.R., Seetharamu, The Finite Element Method in Heat transfer Analysis, John Wiley &sons, England, 1996.

TEMAS ESPECIALES DE TECNOLOGÍA DE LOS MATERIALES

Metales: Constitución – Cristales planos y direcciones cristalográficas – Propiedades mecánicas. Deformabilidad y tenacidad. Rotura. Proceso de deformación y rotura en Augusta en Augusta

Avances en tecnologia del hormigón. Estructura, propiedades y comportamiento del hormigón. Hormigones reforzados con fibras. Hormigones autocompactables. Nuevos materiales estructurales. Compuestos reforzados con fibras.

<u>Bibliografia</u>

- Calvo Rodes R. "Metales y Aleaciones. Tomo I: Constitución y estructura.-Tomo II: Propiedades y tratamiento". Madrid, Instituto Nacional de Tecnica Aeronautica Esteban Terradas, 1948-1957.
- Flinn R.A. y Trojan P.K.. "Materiales de ingenieria y sus aplicaciones". Ed. McGraw-Hill Latinoamericana, S.A. (Bogota, 1979),
- Reglamento INPRES CIRSOC
- Ciencia y Tecnología del Hormigón Publicaciones del LEMIT
- Di Prisco M. Fibre-reinforced concrete for strong, durable and cost-saving structures and infrastructures. Starrylink Editrice, Contrada S. Urbano, Brescia, Italy, 2007.
- 5th Int. RILEM Symposium on SCC, Ghent, Belgium, ISBN: 978-2-35158-050-9,
 Vol. 1, 2007.
- ACI 7th International Symposium on High Strength / High Performance Concrete 2005, Washington D.C., USA, ACI International, SP-228-9, Vol 1

Dra SUSANA N. MAIDANA SEONE ARIA ACADEMICA UNIVERSIDAD NACIONAL DETUCUMAN

FM. Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

- Giaccio, G. y Zerbino, R. "Hormigones de alta resistencia reforzados con fibras", Il Simpósio Internacional sobre Concretos Especiais, Sobral, Brasil, 2004, en CD. Conferencia Invitada, www.Sobral.org/concretosespeciais.
- Hormigones Especiales, Ed. E. Irassar, AATH, Argentina. ISBN 987-21660-0-5.
- Mehta, P. K. y Monteiro, P. "Concreto: Estructura, propiedades y materiales",
 IMCYC, México, 381p, 1998.
- Mindess, S. and Young, F. J. "Concrete", Ed. Prentice Hall, NJ, 671 p, 1981.
 Concrete / Sidney Mindess, J. Francis Young, David Darwin.
- Zerbino, R. "Caracterización reológica de hormigonesautocompactables". III Simpósio Internacional sobre Concretos Especiais, Sobral, Brasil, 2006, en CD. Conferencia Invitada, www.sobral.org/sinco2006.

MODELACIÓN CONSTITUTIVA II

Conceptos Básicos de Fractura Frágil. Tipos de fallas. Modos de propagación de fisuras. Factor de concentración de tensiones. Factor de intensidad de tensiones. Princípios de la Mecánica de Fractura.

Tratamiento de la anisotropia inicial e inducida.

Modelos para materiales compuestos. Macro-modelos y Micro-modelos. Teoría de Mezclas. Teoría de Homogeneización. Deslizamiento de fibras, delaminación e inestabilidad de fibras a compresión.

Modelos para mamposteria. Modelos para materiales porosos considerando el efecto de la humedad y la temperatura. Tratamiento del fenómeno de fatiga

<u>Bibliografia</u>

- Barbero E., Finite Element Análisis of Composite Materials, CRC Press, 2008.
- Crisfield, Non Linear Finite Element Analysis of Solids and Structures, Vol. I y II, John Willey & Sons, England, 1991.
- Holzpfel, G. Nonlinear Solid Mechanics. A continuum Approach for Engineering. John Wiley & Sons, Ltd., 1988.
- Hull D. Materiales compuestos 1987, Editorial Reverté, España
- Jayatilaka, A.S., Fracture of engineering brittle materials. 1979: Applied Science Publishers.
- Lemaitre, J., A course on damage mechanics. 1992: Springer Verlag.
- Lubliner, J., Plasticity Theory. 1990: Macmillan Publishing, U.S.A.
- Malvern, L.E., Introduction to the Mechanics of a Continuous Medium. 1969:
- Maugin, G.A., The thermomechanics of plasticity and fracture. 1992: Cambridge University Press.
- Oller, S., Análisis y cálculo de estructuras de materiales compuestos, Centro Internacional de Métodos Numéricos en la Ingeniería. CIMNE, 2002.
- Trusdell, C. and R. Toupin, The Classical Field Theories. 1960: Handbuch der Physik III/I — Springer Verlag, Berlin.

DIE SUANA H-MAIDANA SECRETANIA ACADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

Froi, Cr., JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

INESTABILIDAD

Conceptos fundamentales de equilibrio y estabilidad de sistemas. Energia potencial en sistemas con no linealidad geométrica.

Técnicas de perturbación en sistemas no lineales. Perturbaciones regulares, degeneradas y singulares, técnicas de substitución explícita, técnicas de diferenciaçión implícita.

Estudio de la estabilidad de sistemas: Definición de estabilidad, estabilidad de estados críticos, estados postcríticos, condiciones de bifurcación, sensibilidad a imperfecciones.

Bibliografia

- Godoy, L. (1999) Theory of Elastic Stability: Analysis and Sensitivity, Taylor and Francis, Philadelphia, PA.
- Thompson, J. M. T. & Hunt, G. W. (1973) A General Theory of Elastic Stability, Wiley, London.
- Croll, J. G. A. & Walker, A. C. (1972) Elements of Structural Stability, Macmillan, London.
- El Naschie, M. S. (1990) Stress, Stability and Chaos: An Energy Approach, McGraw-Hill, London.

TEMAS ESPECIALES DE MECANICA DE LOS SUELOS

Aproximación del medio poroso como un continuo. Procesos fisicos en un medio poroso no-saturado. Medio poroso deformable. Leyes constitutivas. Propiedades fisicas del sólido y fluidos. Formulación global acoplada. Análisis de los principales acoplamientos en problemas de ingenieria. Solución acoplada del problema de flujo y deformación en un medio poroso. Introducción a la modelación numérica de problemas acoplados en medios porosos. Fenomenología del comportamiento de suelos. Suelos saturados. Elasticidad lineal y no-lineal. Modelos de estado crítico. Modelos elastoplástico avanzados. Suelos no-saturados. Modelo elasto-plástico BBM (Modelo Básico de Barcelona) para suelos no-saturados. Modelación avanzada de medios porosos. Modelación del comportamiento de suelos complejos. Modelo para suelos expansivos. Problemas no-isotermos. Efectos químicos en el comportamiento de suelos. Ejemplos y casos prácticos de aplicación.

Dra. SUBANA H. MAIDANA SECRÉTARIA ACADEMICA UNIVERSIDAD NAUDNAL DY NICUMAN

> frei. Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

<u>Bibliografía</u>

- Alonso, E.E., Gens, A. and Hight, D.W.. "Special problem soils. General report. Proc". 9th Eur. Conf. SMFE, 3, pp. 1987-1146 (1987).
- Alonso, E., Gens, A. & Josa, A. "A constitutive model for partially saturated soils".
 Géotechnique, 40, 3, pp. 405-430 (1990).
- Bear, J. "Dynamics of fluids in porous media". Dover Edit (1972).
- Carrera, J. "Hidrogeologia de medios pocos permeables". Memoria XXV Aniversario CIHS, pp. 47-67 (1991).
- Crisfield, M. "Non-linear finite element analysis of solids and structures Vol 1".

- Fredlund, D. & Rahardjo, A. "Soils mechanics for unsaturated soils". Wiley Interscience (1993).
- Gens, A. "Constitutive Laws". In Modern issues in non-saturated soils, A. Gens P. Jouanna & B. Schrefler (ed.): Wien New York: Springer-Verlag. pp. 129-158, (1995).
- Guimaraes L., Gens A., Sánchez M., Olivella S. "Chemo-mechanical modelling of expansive materials". 6th International Workshop on Key Issues in Waste Isolation Research, Paris (2001).
- Hueckel, T., & Borsetto, M. "Thermoplasticity of saturated soils and shales: constitutive equations". Journal of Geotechnical Engineering, ASCE, Vol 116 N° 12, pp. 1765-1777 (1990).
- Huyakorn, B. & Pinder, G. "Computational methods in subsurface flow".
- Khalili, N., Valliappan, Ş. & Wan, C. "Consolidation of fissured clays".
 Géotechnique, 49, N° 1, pp. 75-89 (1999).
- Lloret, A., Villar, M.V., Sánchez, M., Gens, A., Pintado, X., & Alonso, E.
 "Mechanical behaviour of heavily compacted bentonite under high suction changes". Géotechnique, 53(1): 27-40 (2003).
- Mitchell, J. "Fundamentals of soil behaviour". 2nd ed. John Wiley & Sons (1993).
- Oidecop, L. y E.E. Alonso A model for rockfill compressibility. Geotechnique, vol
 51, No. 2, 127-139 (2001).
- Olivella, S., Carrera J., Gens, A. & Alonso, E.E. "Non-isothermal multiphase flow of brine and gas through saline media". Transport in porous media, 15, pp. 271-293 (1994).
- Olivella, S., Gens, A., Carrera, J. & Alonso, E.E. "Numerical formulation for a simulator (CODE-BRIGHT) for the coupled analysis of saline media". Engineering Computations, 13, 7, pp. 87-112 (1996).
- Pastor, M., Zienkiewics, O., & Chan, A. "Generalized plasticity and the modelling of soil behaviour". International Journal for Numerical and Analytical Methods in Geomechanics Vol. 14, pp. 151-190 (1990).
- Potts, D. & Zdravković, L. "Finite Element analysis in geotechnical engineering.
 Theory". Thomas Telford Edit. (1999).
- Romero, E., Gens, A. & Lloret, A. "Suction effects on a compacted clay under non-isothermal conditions". Geotechnique, 53, N° 1, pp. 65-81 (2003).
- Sánchez, M. "Thermo-hydro-mechanical coupled analysis in low permeability media". Ph. D. Thesis, Technical University of Catalonia. Barcelona (2004).
- Sánchez M., Gens A., Guimarães L. & Olivella S. "A double structure generalized plasticity model for expansive materials". International Journal for Numerical and Analytical Methods in Geomechanics (in press) (2004).
- Simo, J, & Hughes, T. "Computational Inelasticity". Springer-Verlag (1998).

Dra. SUSANA H. MAIDANA SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL DE JUCUMAR

17

- Sloan, S. Abbo, A. & Sheng, D. "Refined explicit integration of elastoplastic models with automatic error control". Engineering Computation, Vol 18 Nº 1/2, pp.
- van Genuchten, R. "Calculating the unsaturated hydraulic permeability conductivity with a new closed-form analytical model". Water Resource Research.
- Wilson, R. & Aifantis, E. "On the theory of consolidation with double porosity. Int. J. Engng Sci. Vol. 20, N° 9, pp. 1019-1035 (1982).
- Zienkiewicz, O.C. & Taylor, R.L. "El metodo de elementos finitos Vol. 1 y 2". Mc Graw Hill - CIMNE (1994)..

ESTRUCTURAS ESPECIALES

Estructuras en contacto con fluidos y materiales granulares. Interacción fluidoestructura. Interacción suelo-estructura. Diques, silos, túneles, estructuras off-shore,

Estructuras membranales. Tenso- Estructuras. Estructuras sometidas a impacto. Estructuras sometidas a explosiones

<u>Bibliografia</u>

- Heki K., Shell, Membranes and Space Frames (Developments in Civil Engineering, Volume 14), Elsevier Science Ltd.
- Leonard J.W. Tension Structures: Behavior and Analysis, Mc. Graw Hill.
- Majowiecki M. Tensostrutture: Progetto e verifica, Ed. Crea, 1994.
- Paidoussis M. P., Fluid-Structure Interactions: Slender Structures and Axial Flow.
- Roger Ohayon, Henri J. P. Morand. Fluid-Structure Interaction: Applied Numerical Methods. John Wiley & Sons, 1995.
- Zienkiewicz, O., R. Taylor, "El Método de los Elementos Finitos". Mecánica de Sólidos y Fluidos. Dinámica y No linealidad. Vol. 2. CIMNE. Barcelona. España.

PATOLOGÍA DE ESTRUCTURAS

Información estadística sobre daños. Daños típicos en las fases de: proyecto, ejecución, uso y mantenimiento. Consideraciones especiales sobre la durabilidad. Daños debidos a fallas en los materiales. Mecanismos de daño del hormigón. Fisuración del hormigón. Tipos de fisuras, sus causas e identificación. Corrosión de aceros. Planificación de una investigación. Prospección de armaduras. Determinación de las características del hormigón. Ensayo de probetas para resistencias actuales y potenciales. Rango y presición de los ensayos. Ensayos no destructivos: esclerómetro, ultrasonido, CAPO test, covermeter, half cell. Extracción de testigos. Técnicas de muestreo. Ensayos de vigas de hormigón armado.

fim. Ct. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

ACADEMICA

Dra. SOSANA H. MAIDANA

SECRETARIA

UNIVERSIDAD NAC

<u>Bibliografia</u>

ATC 3-06 "Tentative Provisions for the Development of Seismic Regulations for Buildings". US Gobernment Printing Office, Washington D.C.

- BS 1881:Part 203 Non destructive methods of test for concrete, measurement of the velocity of ultrsonic pulses in concrete.
- Cook G.K., Hinks A.J. Appraising Building Deffects: Perspectives on Stability and Hygrothermal Performance, Longman Scientific and Technical 1992.
- Hobbs, D.W., Alkali-silica Reaction in Concrete, Thomas Telford Publications, 1988.
- Kscully, J.C., The Fundamentals of Corrosion, Pergamon Press, 1990.
- Priestley y Calvi G.M. Towards A Capacity-Design Assessment Procedure For Reinforced Concrete Frames.
- Rodriguez M. y Park R. Repair And Strengthening of Reinforced Concrete Buildings For Seismic Resistance. Earthquake spectra, 1991, vol.7,no3, pp.439-459.
- Tomsett, H.N., The practical use of ultrasonic pulse velocity measurements in the assessment of concrete quality. Magazine of Concrete Research, Vol. 32 No. 110, pp. 7-16, March 1980
- UNIDO/UNDP PR. RER/79/015 "Post Earthquake Damage Evaluation and Strength Assesment of Buildings under Seismic Conditions, Vienna, 1985.

METODOLOGÍA DE LA INVESTIGACIÓN CIENTÍFICA

Planteamiento e instrumentos. El planteamiento científico. Concepto. Dilucidación: Las ideas científicas. Problema. Hipótesis. Ley. Teoria estática. Teoría dinámica

La aplicación de las ideas científicas. De la explicación a la acción. Explicación. Predicción. Acción.

La contrastación de las ideas cientificas. De la observación a la inferencia. Observación. Medición. Experimento. La inferencia científica.

<u>Bibliografia</u>

- Bragg G. M. Principles of Experimentation and Measurement, Prentice-Hall, New Jersey, 1974.
- Braithwaite R. B. Scientific Explanation, Cambridge, University Press,1960
 Traducción Española, Madrid, 1965.
- Bunge M., La Investigación Científica. Su estrategia y su filosofía. Editorial ARIEL, Barcelona 1976.
- Bunge M. The Myth of Simplicity, Englewood Cliffs, New Jersey, Prentice-Hall, 1963.
- Daily J. W., Riley W. F. and Mc Connell K. G. Instrumentation for Engineering Measurements, J. Wiley, New York, 1984.
- Holman J. P. and Gajda W. J. Experimental Methods for Engineers, Mc Graw-Hill, New York 1989.
- Nagel E., Supper P. and Tarski A. Logic, Methodology and Philosophy of Science, Stanford University Press, 1962.

DIEL SUSANA H. MAIDANA SECRETARIA ARADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

> fmi. Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

- Nagel E. The Structure of Science, New York and Burlingane, Traducción Española, Buenos Aires, 1968.
- Nash L.K. The Nature of the Natural Sciences, Boston, Little, Brown and Co.,
- Schenk H. Theories of Engineering Experimentation, Mc Graw Hill, New York,
- Wilson E.B. An Introduction to Scientific Research, New York, Mc Graw-Hill,

Cuerpo Docente

n.1 Profesores Estables

- 1. Dr. AMBROSINI, Daniel (Universidad Nacional de Cuyo)
- 2. Dr. BARLEK, Rodolfo (Universidad Nacional de Tucumán)
- 3. Ing. BENITO, Raúl (Universidad Nacional de Tucumán)
- 4. Dr. DANESI, Rodolfo (Universidad Nacional de Tucumán)
- 5. Lic. ESTRADA, Graciela (Universidad Nacional de Tucumán)
- 6. Dr. ETSE, Guillermo (Universidad Nacional de Tucuman)
- 7. Mg. Lic FERNÁNDEZ, Patricia (Universidad Nacional de Tucumán)
- 8. Mg. Ing. GALINDEZ, Enrique (Universidad Nacional de Tucumán)
- 9. Mg. Ing. GUTIÉRREZ, Sergio (Universidad Nacional de Tucumán)
- 10. Lic. LENCINA, María Isabel de (Universidad Nacional de Tucumán)
- 11. Dr. LUCCIONI, Bibiana (Universidad Nacional de Tucumán)
- 12. Mg. Lic. LUCCIONI, Griselda (Universidad Nacional de Tucumán)
- 13. Dr. MOLLER, Oscar (Universidad Nacional de Rosario)
- 14. Dr. NALLIM, Liz (Universidad Nacional de Salta)
- 15. ing. PASCUAL, Alberto (Universidad Nacional de Tucumán)
- 16. Dr. PÉREZ, Gustavo (Universidad Nacional de Tucumán)
- 17. Dr. RAMALLO, Juan Carlos (Universidad Nacional de Tucumán)
- 18. Ing. RODRÍGUEZ, Carlos (Universidad Nacional de Tucumán)
- 19. Dr. SANCHEZ Marcelo (Univ. of Strathclyde, Glasgow, UK)
- 20. Dr. SFER, Ana María (Universidad Nacional de Tucuman)
- 21. Dr. SFER, Domingo (Universidad Nacional de Tucumán)
- 22. Dr. ZERBINO, Raúl (Universidad Nacional de La Plata)

n.2 Profesores Invitados

- 1. Dr. CRISAFULLI, Francisco (Universidad Nacional de Cuyo)
- 2. Dr. GARCÍA GARINO, Carlos (Universidad Nacional de Cuyo)
- 3. Dr. GODOY, Luis (Universidad Nacional de Córdoba)
- 4. Dr. INAUDI, José (Universidad Nacional de Córdoba)
- 5. Dr. MARTÍN Pablo (Universidad Nacional de Cuyo)
- 6. Dr. MIRASSO, Anibal (Universidad Nacional de Cuyo)
- 7. Dr. OLLER, Sergio (Universidad Politécnica de Cataluña)
- frid, Cr., JUAN ALBERTO CERISOLA 8. Dr. RIERA, Jorge (Universidad Federal de Rio Grande do Suí)

Universidad Nacional de Tucumán

SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

H. MAIDANA

Infraestructura y Equipamiento

Infraestructura edilicia:

1 (una) Biblioteca, 1(una) Sala de Reuniones, 3 (tres) Oficinas para investigadores. Capacidad 4 personas cada una, 1 (una) Oficina para Director, 4 🖡

Estudios para becarios y alumnos de posgrado, 2 (dos) Aulas para 30 alumnos, 1 (un) taller, 1(un) depósito, 1 (una) nave de ensayos de modelos grandes y prototipos, 1

fotoelasticidad, 1 (una) salá de ensayos de modelos reducidos

<u>Equipamiento de ensayos:</u>

Losa reactiva de 10x15 m. con puntos de anclaje cada 50 cm. en dos direcciones. Puente grúa de 7 t. de capacidad

1 (un) portico de carga de 100 t. en régimen dinámico.

2 (dos) pórticos de carga de 100 t. en regimen estático y 50 t. en regimen dinámico. 2 (dos) pórticos de carga de 25 t. en regimen estático.

Equipamiento especial

1 equipo KYOWA para registros dinámicos, compuesto por : 1 oscilógrafo registrador de 6 canales,

5 acelerómetros AS-5GB,

5 acelerómetros AS-10B.

acelerometro triaxial AS-10TB,

2 celdas de carga tracción/compresión LU20Te para 20 t.,

2 celdas de cargas de compresión LC100TYE para 100 t.,

1 módulo amplificador de 8 canales DPM612B, y

1 caja convertidora de puente DP8120A.

10 sensores de presión marca Honeywell de capacidad máxima 35 KPa.

1 equipo AMSLER, aplicación y medición de cargas estáticas, compuesto por dinamómetro a resorte modelo FM 1033 de escala variable, cabezal distribuidor y

1 equipo AMSLER, aplicación y medición de carga dinámicas, compuesto por pulsador modelo P-960, pupitre de control, tubería de presión y medición, acumulador. 1 equipo IBERTEST-GIB aplicación y medición de cargas estat. y dinám., compuesto por un pupitre de 4 vías, electrónico, con lectura analógica de fuerza y

2 gatos hidráulicos AMSLER de 20 t. en régimen estático y 10 t. en régimen dinámico, con placas de vinculación a pórticos de cargas. 2 gatos hidráulicos IBERTEST-GIB de 20 t y 60 t. cada uno en régimen estático

y 10 t. y 30 t. en régimen dinámico.

2 gatos hidráulicos SIMPLEX de 60 t. con placas de vinculación a pórticos de carga. gato hidráulico SIMPLEX de 100 t. con placas de vinculación a pórticos de carga.

2 bombas manuales SIMPLEX .

Dra. SUSANA H. MAIDANA

SECRETARIA ACADEMICA

UNIVERSIDAD NACIONAL DE TUCUMAN

3.cilindros hidraulicos 5.10x25 t. de capacidad.

1 equipo INSTRON para aplicación de cargas estáticas, variables y con control de deformaciones con gestión asistida mediante computadora y software al efecto, compuesto por: una consola de control serie 2180, una celda de carga serie 2518-100, un actuador hidráulico serie 3375 y una subestación hidráulica serie 3460.1 central extensométrica automatica HBM de 20 canales para el registro de deformaciones

Un Extractor de testigos de Hormigón a combustión

Un Extractor de testigos de Hormigón eléctrico

COVERMASTER, Palpador o sensor, central de medición

Medidor Resistividad RMMK II C/ Manual, Puntas de Pruebas, Cargador de Baterias

PUNDIT C/ Manual

Medidor de Ultrasonido MASTRAD

Esclerómetro SCHMIDT

Equipo Capo – Test MASTRAD

Media Celda HALF-CELL P/ Medir capacidad Distribuida en el Hormigón

Equipamiento de cómputos:

3 Notebooks C2 Duo con 2Gb de Memoria, 4(cuatro) computadoras core 2 Duo con 2Gb de memoria y 320 Gb de disco. 5(cinco) computadoras Durkes.

Gb de memoria y 320 Gb de disco, 5(cinco) computadoras core 2 Duo con 2 memoria y 160 Gb de disco, 5(cinco) computadoras Dual core con 1Gb de memoria y 160 Gb de disco, 12 (doce) computadoras Pentium IV 3.2 GHz 512Mb de Memoria y 150Gb de Disco; 3 (tres) Impresoras Hewlet packard Laserjet 1160; 1 (uno) scanner Hewlett Packard Scanjet 5100C; 1 (uno) Scanner OPTIC PRO; 1 (uno) Plotter Licencia perpetua Abaqus Estándar/Explicit en una máquina V.6.6. Licencia SAP 2000.

Observaciones:

Cabe destacar que 24 PCs se encuentran conectadas en red interna y cuentan con acceso a Internet provisto por la Facultad, incluyendo correo electrónico. La biblioteça funciona en el mismo edificio del Instituto de Estructuras (Av. Roca 1800) donde se dicta la carrera de Maestria en Ingeniería Estructural y donde tienen sus estudios los alumnos. La Biblioteca está disponible todos los días del año las 24 hs. y los alumnos pueden sacar en préstamo los libros por una semana y las revistas por el día.

- q. Actividades de Investigación Vinculadas con los Objetivos del Posgrado En el Instituto de Estructuras, se desarrollan actualmente los siguientes programas y proyectos de investigación en el marco de los cuales se encuadran las Tesis de Maestría:
- q.1. Evaluación y rehabilitación de puentes (CIUNT 26/E404) Resumen:

Actualmente se reconoce la necesidad de mantener operativas las vias de comunicaciones, tanto por cuestiones económico-sociales en tiempos normales, como por razones de seguridad ante ocurrencia de catástrofes. Sin embargo, en las últimas décadas se ha podido observar un alto grado de deterioro en estructuras de puentes. Las causas de tal degradación estructural se pueden encontrar en: diseños no adecuados a la durabilidad esperada, falta de control de calidad durante la construcción, aumento de niveles de contaminación, falta de mantenimiento, imprevisiones de acciones tales como sismos, riadas, etc. Además muchos de los puentes actualmente en servicio se construyeron con anterioridad a la aparición de la normativa sismorresistente, o en base a prescripciones de normas caducas anteriores a las vigentes. Pese a este creciente deterioro y a la importancia estratégica de este tipo de estructuras, los presupuestos para mantener, reparar y/o rehabilitar puentes existentes son siempre limitados. Un uso eficiente de los recursos, requiere de estudios previos tales como inspección, evaluación de daño estructural y aptitud sismica, en base a los cuales se han de desarrollar proyectos de rehabilitación integrales y por último de un análisis económico comparativo entre las opciones: rehabilitación vs. construcción de puentes nuevos. En la actualidad hay una tendencia consistente en la priorización de recursos basada únicamente en la condición de la estructura. Sin embargo y aunque el deterioro constituye un factor importante en relación a la política de acción, también se imponen consideraciones de riesgo y confiabilidad. Es decir que el objetivo básico es identificar las estructuras criticas de la red de puentes y mantener la confiabilidad de las mismas en un nível óptimo.

Dra. SUSANA M. MAIDANA SECRETANIA ACADEMICA UNIVERSIDAD NACIONAL DE PICUMAN

frd, Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

Universidad Nacional de Tucumán Rectorado

> Cabe destacar la importancia que este tema tiene para Organismos Nacionales y Provinciales responsables de Puentes: Interés que dio origen a Convenios de Asistencia Técnica con este proyecto y que conciernen a Evaluación y Rehabilitación de Puentes (ver antecedentes del grupo). Se espera que los resultados de este proyecto continúen siendo transferidos a profesionales. Organismos Públicos y Privados e interesados en el tema.

> El objetivo general es: proponer metodologías para la evaluación estructural y sísmica de puentes de hormigón y técnicas de rehabilitación integrales que puedan ser aplicadas en nuestro país e incorporadas como prácticas usuales. Son objetivos específicos:

- 1.- Optimizar metodologías experimentales para la obtención de datos representativos de las características mecánicas de los materiales constitutivos de puentes.
- 2.- Desarrollar e implementar modelos capaces de predecir la evolución de daños en el
- 3.- Elaborar una propuesta de manual de inspección y evaluación de puentes de la
- 4. Elaborar un indice de condición de puentes que refleje el cambio de condiciones
- 5.- Proponer y verificar el comportamiento estructural de reparaciones y/o refuerzos. adoptados para puentes tipos de la región.
- 6.- Evaluar posibles daños debidos a acciones sísmicas en puentes de la red vial primaria y proponer metodologías tipos de rehabilitación sísmica de puentes en
- 7.- Proponer cambios en diseños que ayuden a mitigar patologias frecuentes de
- Evaluación y Rehabilitación de Estructuras de Hormigón y Mamposteria (CIUNT

Resumen:

El hormigón y la mampostería son actualmente los materiales mas usados para la construcción de las estructuras de edificios. A lo largo de los años, el tipo y calidad de los materiales y la tecnología de la construcción han cambiado considerablemente, pero también ha ido aumentando el conocimiento de su comportamiento y con ello el desempeño de las estructuras. Sin embargo, todas las construcciones experimentan deterioro a lo largo del tiempo, afectando su desempeño estructural y su comportamiento bajo condiciones normales de servicio. En algunos casos este deterioro puede ser tan severo que la estructura o componente afectado no pueda ser reparado, pero en otros casos, es posible formular estrategias de protección y reparación que puedan extender su vida útil incluso más allá de la que fuera proyectada originalmente. Las medidas de protección y reparación proyectadas para este fin, deben ser seleccionadas cuidadosamente a partir de los resultados de la evaluación y el diagnóstico de la estructura y sus costos deben ser estimados en relación al valor de la estructura para el resto de su vida útil versus el costo de

este proceso debe ser necesariamente abordado por profesionales especializados en la disciplina de Patología de las Construcciones, a través de una metodología que contemple las tareas de estudio, auscultación, evaluación, rehabilitación y refuerzo de las estructuras.

Por otro lado, en los últimos años también ha crecido el interés por la evaluación del riesgo sísmico potencial de edificios construidos antes del advenimiento de los códigos de diseño sismorresistente y el de la evaluación de daños en las construcciones por la ocurrencia de sismos, donde surge la necesidad de evaluar y cuantificar el daño producido, para lo cual es de suma importancia, disponer de guias rápidas de

H. MAIDANA SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL DE TUCUMAN

> ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

evaluación de daños para poder tomar decisiones correctas luego de la ocurrencia de

Cabe destacar que en este grupo de construcciones se encuentran las de alto valor las decidades de la construcciones de encuentran las de alto valor la construcciones de encuentran las de alto valor la construcción de la c

Los objetivos generales de este proyecto son los de estudiar distintas metodologías para la evaluación de estructuras dañadas por diferentes causas y proponer técnicas de rehabilitación adecuadas que garanticen su durabilidad, un comportamiento los objetivos associativos económicamente viable.

Los objetivos específicos que se plantean son los de redactar guias de evaluación y rehabilitación para construcciones de hormigón y mamposteria utilizando materiales y tecnologías disponibles er nuestro medio.

Se espera que los resultados que se obtengan sean útiles para profesionales de la Ingeniería Civil y Arquitectura interesados en la recuperación de edificios públicos y privados, como así también de las Municipalidades y Órganos de Gobierno vinculados Con la preservación del Patrimonio Histórico como ser la Dirección de Arquitectura de la Nación.

Estudio teórico experimental y numérico del comportamiento de falla de hormigones reforzados con fibras (CIUNT 26/E449)
Resumen:

En la actualidad existe un gran desarrollo en la utilización del hormigón como material constitutivo para la construcción de diferentes elementos estructurales, es por ello que el estudio de su comportamiento en régimen de falla resulta de gran importancia en el presente, en particular se debe considerar que los resultados de estos estudios conducen a la optimización de las estructuras con beneficios directos en su seguridad y falla y por lo tanto es relevante conocer el comportamiento de los mismos bajo diferentes condiciones de carga.

Si bien no existen dudas de que la incorporación de fibras cortas dispersas en una matriz frágil como la que posee el hormigón le confiere una mayor capacidad para controlar el desarrollo de la fisuración, con beneficios directos en las propiedades en estado endurecido, particularmente en la tenacidad, aumento de la capacidad de absorción de energía, aumento de la ductilidad antes de la falla última y mejoras en la experimentales obtenidos, el empleo a nivel estructural de hormigones reforzados con fibras, los procedimientos de análisis no valoran adecuadamente su aporte y se

El presente proyecto tiene como objetivo general desarrollar criterios para el diseño estructural de hormigones reforzados con fibras bajo solicitaciones de corte, de forma tal de lograr bases para una mejor aplicación y mayor aprovechamiento de las ventajas y alternativas que brinda este nuevo material.

Para ello se propone el desarrollo de un estudio experimental que provea información de relevancia con respecto al comportamiento de falla bajo solicitación de corte. Se pretende implementar la realización de ensayos a nivel material en probetas tipo Luong y a nivel estructural en elementos tipicos sometidos a corte, que constituirán antecedentes experimentales válidos para desarrollar una herramienta de análisis.

Los resultados de este proyecto se podrán utilizar para una mejor comprensión de la falla del hormigón desde una visión mecánica que ha de permitir el desarrollo de modelos y formulaciones constitutivas más realistas y eficientes, y por otro lado caracterizar al material y poder calificar al mismo según este comportamiento.

DIE SUBANA H. MAIDANA SECRETARIA ACADEMICA UNIVERSIDAN NACIONAL DE TUCUMAN

HAL Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional & Tycumán

Comportamiento de nuevos materiales estructurales (CIUNT 26/E427)

La industria de la construcción moderna, requiere cada vez más exigencias de los materiales, que son usados bajo condiciones más severas, como acciones dinámicas con fuertes velocidades de carga. Dichas acciones pueden ser de origen accidental o producidas por las mismas condiciones de servicio de las estructuras. Por otro lado, durante su vida útil las estructuras de hormigón y mampostería ya existentes pueden resultar expuestas a cargas mecánicas, como así también a agentes agresivos químicos o térmicos que produzcan la degradación de sus propiedades mecánicas dando lugar a una consiguiente pérdida de seguridad que haga necesaria su reparación y o refuerzo.

Estos hechos han dado lugar, por un lado, al desarrollo de nuevos materiales como, por ejemplo, los materiales compuestos reforzados con fibras para cumplir con fines específicos y, por otro lado, han creado la necesidad de desarrollar programas de simulación estructural con el objeto optimizar dimensiones, reducir los márgenes de seguridad o simplemente bajar costos y, a su vez, poder diseñar adecuadamente los nuevos materiales y los sistemas de refuerzo y reparación.

El objetivo principal de este proyecto es la definición de modelos materiales realistas simular adecuadamente nuevos fundamentalmente materiales compuestos, que se utilizan en sistemas de reparación. refuerzo y control, o materiales tradicionales como el hormigón y la mamposteria bajo acciones no convencionales como explosiones e impacto. Dichos modelos serán implementados en un programa de elementos finitos y en un hidrocódigo que permitirán predecir el comportamiento dinámico no lineal y la degradación y falla de elementos estructurales y no estructurales, reparados y o reforzados, bajo solicitaciones de típico mecanico y explosiones respectivamente. Los objetivos específicos planteados son:

a) Desarrollo de herramientas numéricas para el diseño y verificación de elementos estructurales frente a a cargas explosivas

b) Desarrollo de herramientas numéricas para la evaluación de la eficiencia de sistemas de reparación y/o refuerzo con láminas de material compuesto con fibras, que tengan en cuenta los fenómenos de delaminación y despegue

Evaluación de experimental y numérica de la eficiencia del refuerzo a corte con hormigones con fibras. Desarrollo de herramientas numéricas para la evaluación de la eficiencia de sistemas de reparación y/o refuerzo con matériales hormigones con fibras.

Desarrollo de una herramienta computacional que permita evaluar la eficiencia de sistemas basados en la utilización de compuestos con fibras piezoeléctricas, para el control activo de vibraciones en estructuras esbeltas.

espera que los resultados del proyecto contribuyan al avance del conocimiento en el área de la mecánica de materiales y a la formación de recursos humanos. A su vez, los mismos pueden ser transferidos a la industria de la construcción a través de recomendaciones sobre la utilización de materiales compuestos para reparación, refuerzo y control de estructuras. Por otro lado, los modelos constitutivos y programas a desarrollar en el marco del proyecto no se restringen a materiales usados en construcción sino que pueden ser aplicados, sin mayores modificaciones, para tratar numerosos problemas de otros tipos de industrias entre las que merecen destacarse la industria metal-mecanica y

MAIDANA SECRETARIA ACADEMICA TUCUMAN UNIVERSIDAD NACIONAL OF

rol Ci. Juàn Alberto Cerisola Universidad Nacional de Tucumán

Diseño y aplicación estructural de hormigones con fibras (PICT 2006-01231)

El hormigón estructural es el material de construcción más ampliamente utilizado debido a su baja relación costo/resistencia en comparación con otros materiales. En la actualidad no existen dudas de que la incorporación de fibras cortas dispersas en una matriz frágil como la que posee el hormigón le confiere una mayor capacidad al hismo para controlar el desarrollo de la fisuración, con beneficios directos en las propiedades en estado endurecido, particularmente en la tenacidad, aumento de la capacidad de. absorción de energía, aumento de la ductilidad antes de la falla última y mejoras en la durabilidad, entre otras contribuciones.

Su campo de aplicación ha crecido notablemente y existen en la actualidad diversos ejemplos de uso de fibras en hormigón como revestimientos de túneles, elementos premoldeados, construcción y reparación de pavimentos o tableros de puentes. Inicialmente las principales aplicaciones se realizaron con fibras de acero, pero recientemente han aparecido en el mercado fibras sintéticas estructurales que pueden competir en varios casos con las primeras. Además de las mejoras en las fibras disponibles, se ha avanzado en el desarrollo del Hormigón Reforzado con Fibras (HRF) como material, se han obtenido HRF de alta resistencia y en los últimos años Hormigones Autocompactables Reforzados con Fibras (HACRF). El HACRF posee una fluidez muy elevada sin riesgos de segregación y permite la construcción de estructuras en menos tiempo y fundamentalmente libres de defectos (oquedades, terminación

Dadas las probadas ventajas que confieren las fibras a los elementos estructurales de hormigón, cabe preguntarse por qué su utilización está restringida a aplicaciones no estructurales o estructuras especiales. Parte de la respuesta reside en el hecho de que las pautas de diseño para HRF no han acompañado el desarrollo del material. Los procedimientos de diseño existentes no valoran adecuadamente el aporte de las fibras. Ante esta situación hace unos pocos años se desarrolló el proyecto europeo Brite-Euram BRPR-CT98-08013 "Test and Design Methods for Steel Fiber Reinforced Concrete" (1999-2002), donde además de avanzar en la caracterización del HRF a nivel de propiedades constitutivas se propuso un procedimiento de diseño estructural

Considerando lo expuesto, el presente proyecto tiene como objetivo general desarrollar criterios para el diseño estructural de hormigones reforzados con fibras, de forma tal de lograr bases para una mejor aplicación y mayor aprovechamiento de las ventajas y alternativas que brinda este nuevo material.

El desarrollo del conocimiento propuesto en el proyecto tendrá un impacto directo tanto en la construcción de estructuras civiles nuevas como en la realización de reparaciones en estructuras existentes, dando lugar a una mayor vida en servicio de las mismas. Las construcciones civiles constituyen un porcentaje significativo del patrimonio de un país, tanto las tareas de mantenimiento como la reconstrucción implican la disponibilidad de Universidad Nacional & Tucumán recursos importantes, que no hay dudas deben ser optimizados. Desde este punto de vista, el proyecto posee un impacto directo ya que procura contribuir al desarrollo sustentable realizando un aporte concreto para el mejor uso y conservación de las

El proyecto será llevado a cabo por un grupo formado por investigadores altamente calificados a nivel nacional e internacional que se complementan en los dos aspectos requeridos para abordar el tema. Una parte de ellos pertenecen al LEMIT-CIC y poseen numerosos antecedentes en el desarrollo de hormigones especiales. Son referentes en el tema de HRF con contribuciones destacadas a nivel internacional. A su vez, los investigadores pertenecientes al Instituto de Estructuras de la UNT, que es un referente en el análisis y evaluación de estructuras de hormigón y reparación y/o refuerzo de estructuras de hormigón y ha llevado a cabo una destacadisima labor en la

Dra. SUSAN MAIDANA SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL D

rm. Cr. JUAN ALBERTO CERISOLA RECTOR

formación de recursos humanos, cuentan con contribuciones relevantes en la modelación teórico, numérica y experimental del problema. Debe remarcarse, además, que existen antecedentes de trabajo conjunto, tanto a nivel de proyectos de investigación como a nivel de formación de recursos humanos. En este sentido, el proyecto procura fortalecer el vinculo existente, favoreciendo el intercambio científico y contribuyendo a la formación de recursos humanos.

q.6 Vulnerabilidad Sismica de Edificios Vitales de la Red de Emergencias (PME-2006-01344)

Resumen

Los desastres naturales, como terremotos, inundaciones, huracanes y erupciones volcánicas, causan anualmente una gran cantidad de muertes, daños y pérdidas de infraestructura econômica y social en diversos países del mundo.

En nuestro pais, existe una vasta región que ha sido afectada por la ocurrencia de terremotos. El más reciente, ocurrido el 7 de septiembre de 2004 en la Provincia de Catamarca, ha dejado en evidencia el nivel de vulnerabilidad de edificaciones consideradas vitales para la red de emergencia, como ser hospitales y escuelas.

En este sentido, es necesario establecer el riesgo sismico imperante en una región, entendiéndose como tal a la probabilidad de pérdida (económica o humana) causada por un sismo, dentro de un periodo de tiempo determinado. Este parametro depende, a que refleja las características de la intervención humana.

La peligrosidad está relacionada con la probabilidad de que ocurran movimientos sísmicos en una zona determinada, lo que refleja características de la naturaleza que no pueden cambiarse. Por el contrario, la vulnerabilidad o capacidad de resistencia de las estructuras expuestas a estos movimientos, que refleja la intervención humana, puede ser modificada. De esta manera, para disminuir el riesgo es necesario el identificación y disminución de las vulnerabilidades.

La exposición y vulnerabilidad existentes en nuestro país al mencionado peligro sísmico, tanto de pequeñas comunidades como de grandes núcieos urbanos y de sus economías, urge a que se reduzca la brecha entre lo que se conoce y lo que se debería conocer acerca del fenómeno sísmico, y sus consecuencias en lo físico, económico, social y ambiental. Esto es dramáticamente cierto si se tienen en cuenta los costos de vidas y las inversiones económicas necesarias para recuperar bienes y servicios después de cada catástrofe

En términos generales, la vulnerabilidad puede entenderse como la predisposición intrinseca de una edificación a sufrir daño debido a posibles acciones sísmicas y, por lo Debido a que muchas edificaciones habitatados del riesgo.

Debido a que muchas edificaciones hospitalarias y de escuelas fueron construidas hace mucho tiempo y otras no han sido diseñadas ni construidas con normas sismorresistentes, surgen dudas con respecto a la seguridad que dichas edificaciones ofrecen para cumplir adecuadámente su función en caso de un sismo, principalmente cuando éstas son necesarias para la atención de una emergencia. En esto casos, se hace imperativa una revisión lo más detallada posible de la capacidad de la estructura partir de estas evaluaciones, se determinan los niveles de vulnerabilidad. A ponde de la capacidad y la necesidad o no de intervención para la disminución del riesgo. El tipo de intervención depende del funcional hasta refuerzos estructurales.

La dificultad para construir nuevas instalaciones hospitalarias y educativas en zonas sismicas, debido a su alto costo, hace imperativo intervenir reforzando aquellas existentes.

Dra. SUSANA H. MAIDANA SECRÉTARIA ACADEMICA UNIVERSIDADNACIONAY DE TUCUMAN

froi. Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

Estas intervenciones, que se deben llevar a cabo para reducir el riesgo y garantizar un comportamiento adecuado, deben estar basadas en conocimientos científicos y ser consistentes con los requisitos ingenieriles actuales y los códigos de diseño de cada

En nuestro país, no existe un programa sistemático con el fin de mitigar el riesgo sísmico de las construcciones existentes de la red de emergencia y son escasos los aportes al desarrollo de programas de investigación relacionados con el estudio del desempeño de nuevos materiales, componentes estructurales y sistemas constructivos no tradicionales orientados al refuerzo sismico. Más aún, a nivel reglamentario no existe en el país ningún lineamiento que permita evaluar la vulnerabilidad de las construcciones en detalle, ní las medidas de readecuación sismica consecuentes.

En base a lo antes expuesto, se propone llevar adelante un proyecto de investigación con el objetivo final de mejorar el conocimiento del riesgo sísmico, así como las medidas de rehabilitación sismica para las construcciones vulnerables de la red de

Objetivos Generales

- a) Proponer procedimientos y guías de inspección visual para realizar un inventario, que permitan evaluar, desde un enfoque multidisciplinario, la vulnerabilidad sismica de construcciones, en particular, de los edificios considerados claves en la red de emergencia (salud, educación, etc.).
- b) Proponer lineamientos para la reducción de la vulnerabilidad de las construcciones.
- c) Desarrollar sistemas innovadores para edificios sismorresistentes (tales como aisiadores sismicos, disipadores de energia de distinto tipo, etc), y proponer especificaciones y recomendaciones para su diseño. Objetivos Específicos
- a) Analizar procedimientos y metodologías existentes para la evaluación de la vulnerabilidad sismica a fin de seleccionar las más apropiadas a la realidad de nuestro
- b) Analizar guias de inspección visual y fichas de inventario de edificios construidos en
- c) Proveer información numérica para la formulación de modelos computacionales que simulen el comportamiento de los elementos estructurales, necesarios para la metodología de evaluación propuesta.
- d) Seleccionar instrumentos y metodologías para la evaluación del comportamiento de los elementos no estructurales, la aptitud funcional y la continuidad de funcionamiento post terremoto de los elementos mínimos de infraestructura de servicios (energía eléctrica, agua, gas, evacuación de efluentes) de aquellos edificios considerados claves
- e) Crear una red nacional de evaluadores calificados en vulnerabilidad sismica de edificios (homogenización de criterios de evaluación).
- f) Proponer lineamientos de diseño que contribuyan a la reducción de la vulnerabilidad
- g) Analizar y calibrar las técnicas existentes para la rehabilitación de estructuras y confección de guías que permitan la adopción de distintas técnicas adecuadas a la tecnología disponible en nuestro medio.
- h) Proveer información experimental para la formulación de modelos computacionales que simulen el comportamiento de nuevos materiales, componentes estructurales y sistemas constructivos no tradicionales orientados al refuerzo sísmico.

Para alcanzar estos objetivos se considera necesario aunar esfuerzos entre distintos centros de I&D que vienen realizando trabajos de investigación en esta área del conocimiento, de tal manera de compartir los recursos físicos y humanos disponibles para alcanzar resultados concretos que puedan ser transferidos en forma inmediata a la comunidad científica y profesional. Para ello se propone crear una red conformada por el Instituto de Ingeniería Civil y Medio Ambiente de la Universidad Nacional de

H. MAIDANA ADEMICA

frol Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional & Tucumán Salta, el Instituto de Estructuras #Arturo M. Guzmán# de la Universidad Nacional de Tucumán y el Instituto de Investigaciones Antisismicas #Aldo Bruschi# de la Universidad Nacional de San Juan.

El propósito para los dos años a que se limita el proyecto se circunscribe a la evaluación y propuesta de rehabilitación de estructuras de edificios de hospitales y escuelas que forman parte de la red vital de emergencia.

r. Financiamiento

r.1 Fuentes principales

La mayoría de los docentes estables son Profesores de la UNT. Los gastos de viajes y viáticos de docentes, tanto estables como invitados, de otras Universidades del país o del extranjero son cubiertos con fondos propios del Instituto de Estructuras.

r.2 Fuentes complementarias (Ultimos 5 años)

En los últimos años se dispuso de las siguientes fuentes complementarias de financiamiento

Año	Fuente	Monto
2004	CIUNT, Trabajos de Extensión	
	CIUNT CONICET (E-)	\$ 40.000
2005	CIUNT, CONICET (Equipamiento), Trabajos de Extensión	\$45.000
2006	CIUNT, CONICET (Equipamiento), Trabajos de Extensión	\$47,000
2007	CIUNT, CONICET (Equipamiento), Fundación YPF (Becas), Trabajos de Extensión	\$60,000
2008	CIUNI, CONICET (Equipamiento): Agencia	+55.000
	Fundación YPF (Becas), Trabajos de Extensión	\$110.000

s. Mecanismos de evaluación y seguimiento de la carrera por parte del Comité Académico.

Antes de empezar el dictado de las asignaturas del plan de estudio se realizan reuniones con los profesores de las mismas para actualizar el programa de las materias, bibliografía e inclusive mejorar metodología y técnicas de aprendizaje.

El director y el coordinador se mantienen informados permanentemente del desarrollo de las tareas docentes y de investigación mediante reuniones con cada uno de los Se realizan reuniones.

Se realizan reuniones regulares del Director y el Coordinador con los alumnos y, a su vez, reuniones a pedido de los estudiantes cuando existen dificultades con el ritmo, El Comità Acade de los docentes.

El Comité Académico realiza una evaluación de la Carrera al terminar cada ciclo y vuelca el resultado en un informe.

La Dirección Académica eleva el resultado de esta evaluación al terminar el dictado de cada ciclo junto con las propuestas de modificación del reglamento y planes de estudio.

Los contenidos de las asignaturas del curso de estudio se mantienen actualizados, teniendo en cuenta el resultado de estas evaluaciones, las sugerencias de profesores y alumnos y los avances de las distintas disciplinas y herramientas disponibles.

Dra. SIZAN H. MAIDANA SECRETANA ACADEMICA UNIVERSIDA NACIONA DE TUCUMAN

rroi. Cr. JUAN ALBERTO CERISOLA RECTOR Universidad Nacional de Tucumán

La evaluación de los docentes es tenida en cuenta en la propuesta de los docentes responsables de las distintas asignaturas que se eleva para cada ciclo.

Reglamento de Funcionamiento de Carrera

t.1 Requisitos de Admisión

- Título previo exigido: Ingeniero (por lo menos 5 años de carrera).
- Promedio general no menor de 7 (siete) en escala 1-10 en los últimos tres años.
- Presentar constancia de conocimientos de Inglés Técnico.
- Presentar solicitud y formulario de admisión acompañados de la documentación
- Mantener una entrevista con la Comisión de Admisión.

t.2 Comisión de Admisión

La Comisión de Admisión está integrada por los miembros del Comité Académico. La Comisión de Admisión realiza una lista por orden de mérito de los candidatos que reúnen las condiciones para ser admitidos

t.3 Director Académico

La dirección académica de la Maestría en Ingeniería Estructural está a cargo del Instituto de Estructuras a través de un profesor, miembro del Comité Académico quien es designado a tal efecto por el Honorable Consejo Superior de la UNT a propuesta del mismo Comité.

La propuesta del Comité Académico surge del resultado de una votación, por mayorla absoluta de votos.

La duración del Director Académico en sus funciones es de 4 años.

t.3,1 **Funciones**

El Director Académico de la Maestría en Ingeniería Estructural debe tener una dedicación de 12hs semanales y tiene las siguientes obligaciones y facultades:

- Hacer cumplir las disposiciones reglamentarias.
- Informar al Departamento de Posgrado de la Facultad de Ciencias Exactas y Tecnología, normas complementarias de los reglamentos vigentes para el
- Proponer al Departamento de Posgrado de la Facultad de Ciencias Exactas y Tecnología, el personal docente que participara en el Maestría en Ingeniería Estructural y la constitución del Comité Académico.
- Integrar el Consejo de Directores de Posgrado de la Facultad de Ciencias Exactas y Tecnologia.
- Realizar gestiones ante organismos nacionales y extranjeros relacionados con el funcionamiento de la Maestria en Ingenieria Estructural.
- Asistir a actos relacionados con la Maestría en Ingeniería Estructural.
- Presidir el Comité Académico y la Comisión de Admisión.
- Elevar a las autoridades correspondientes los pedidos de inscripción, constitución de Comísiones de Supervisión y Jurados de Tesis.
- Elevar a las autoridades correspondientes las modificaciones reglamentarias y del plan de estudios correspondiente.
- Elaborar el presupuesto anual de funcionamiento de la carrera.
- Elaborar un plan estratégico a futuro.

Dra. SUSAN ΑΝΑΦΙΑΙ SECRET UNIVERSIDAD

riol, Cr. JUAN ALBERTO CERIBOLA RECTOR Universidad Nacional de Tucuman

Iniversidad Nacional de Tucumán Rectorado

t.4 Coordinador

La coordinación académica de la Maestria en Ingeniería Estructural está a cargo del Instituto de Estructuras a través de un profesor, miembro del Comité Académico, quien es designado a tal efecto por el Honorable Consejo Directivo de la FACET a propuesta de la Comité Académico.

La propuesta del Comité Académico surge del resultado de una votación, por mayoria

La duración del Coordinador en sus funciones es de 4 años.

t.4.1 **Funciones**

El Coordinador Académico tiene las siguientes funciones:

- Secundar al Director Académico y-reemplazarlo en caso de ausencia.
- Coordinar el cronograma de actividades (cursos, exámenes, seminarios,
- Supervisar el rendimiento y avance de alumnos (calificaciones, informes de tesis, seminarios) y de las distintas actividades curriculares.
- Llevar el registro de las distintas actividades académicas y del cumplimiento de los requisitos de graduación de los alumnos.
- Servir de nexo entre los alumnos y el Comité Académico y entre los Profesores y

t.5 Comité Académico

El Comité Académico está integrado por el Director Académico y cuatro miembros. Requisitos para su integración: ser Profesor Titular o Asociado, o Magister o Doctor de la especialidad estructuras y ser Profesor Estable de la Carrera. Por lo menos un 20% de los miembros del Comité Académico está constituido por Profesores Estables

Los miembros del Comité Académico son designados por el Honorable Consejo Directivo de la FACET a propuesta del Director Académico y del Coordinador

La duración del Comité Académico en sus funciones es de 4 años.

t.5.1 Funciones

El Comité Académico debe reunirse periódicamente y realizar un acta con los resultados de dicha reunión. Sus funciones son las siguientes.

- Supervisar y aconsejar al Director Académico en su gestión.
- Asesorar al Director Académico en temas especializados de la disciplina. Realizar una evaluación de la carrera al terminar cada ciclo y volcarlo en un informe.
- Proponer la actualización o modificación de los planes de estudio y programas de
- Proponer las estrategias de mejoramiento de la carrera.
- Proponer modificaciones al reglamento de funcionamiento.
- Asesorar al Director Académico en cuestiones presupuestarias. Promover actividades de intercambio con otras instituciones de investigación y
- Proponer los nombres del Director Académico al HCS y del Coordinador al HCD

MAIDANA Dra. SUSANA 17 SECRETARIA UNIVERSIDAD

And, G., JUAN ALBERTO CERISOLA RECTOR Universidad Racional de Tucumán Universidad Nacional de Tucumán Rectorado

- Proponer la integración de los tribunales de examen y de tesis, de las Comisiones
- Avalar el reconocimiento de equivalencias de créditos.
- Aconsejar a la Dirección en temas de excepción.
- Integrar la Comisión de Admisión.

t.6 Funciones del Cuerpo Docente

- Dictar las clases de las materias asignadas
- Realizar las evaluaciones y examenes correspondientes
- Integrar tribunales de examenes de otras materias
- Dirigir y codirigir tesis
- Integrar Comisiones de Supervisión de tesis
- Proponer actualizaciones o modificaciones de programas de las asignaturas.

Método de Evaluación

La evaluación de cada materia del Plan de Estudios considera los siguientes

- Pruebas escritas regulares (dos por materia como mínimo) que permitan seguir de cerca el progreso del estudiante en la asimilación de los conceptos fundamentales de
- Presentaciones escritas (monografias) sobre temas específicos con intenso trabajo
- Presentaciones orales (seminarios) sobre temas específicos con la correspondiente discusión en conjunto con los demás estudiantes, dirigido por el Profesor de la
- Examen Final Escrito. Las materias del Curso de Estudios se rinden inmediatamente después de terminado el dictado de las mismas en fechas que están dentro de los quince (15) días de la finalización de las clases.
- Las materias se clasifican en escala 1-10. La calificación minima para acreditar las horas es 6 (seis). La calificación mínima para aprobar una materia es 4 (cuatro).
- 5. Las materias pueden rendirse una sola vez.

t.8 SECRETARIA MADENICA

rm, Cr. JUAN ALBERTÒ C**erisola** RECTOR

UNIVERSID

Universidad Nacional de Tucumán

Presentación del Tema Y Plan de Tesis

Completado satisfactoriamente el 70% del Plan de Estudios el alumno podrá elevar a la Dirección Académica una solicitud de inscripción, comunicando la elección del Director de Tesis y pidiendo la aceptación del Tema de Tesis y su respectivo Plan de

Reconocimiento de Estudios

Cuando el posgraduando hubiera realizado estudios de posgrado en la Universidad Nacional de Tucumán o en otras universidades, la Comisión de Supervisión podrá proponer su reconocimiento con el aval del Comité Académico que establecerá la equivalencia de las mismas teniendo en cuenta la Res. 728/99 del H.C.S y Art. 30 del Reglamento de Posgrado vigente.

t.10 Condiciones de permanencia

- Deberá realizar estudios con dedicación exclusiva durante por lo menos 12 meses. Terminados los cursos deberá realizar la Tesis con media dedicación
- Se admitirá solamente una materia desaprobada.
- Se admitirán hasta dos materias no acreditadas.
- Se admitirá solamente un informe considerado NO ACEPTABLE por la Comisión de Supervisión de Tesis.

Las condiciones de permanencia serán conocidas por los alumnos desde el momento de su admisión. A tal fin, se les entregará copia de las mismas junto con la resolución de admisión.

t.11 Promoción y Graduación

Para la promoción y graduación los alumnos deberán cumplir con los siguientes requisitos:

- Residencia: Implica realizar estudios y trabajos de investigación en la unidad académica pertinente durante, por lo menos doce (12) meses con dedicación exclusiva.
- Curso de Estudios: Implica cúrsar las materias obligatorias (fundamentales) del Plan de Estudio y materias electivas (especializadas) recomendadas para cada postulante por la Comisión de Supervisión. Comprenderá no menos de 540
- <u>Tareas de Investigación</u>: Participación en Proyectos de Investigación que se desarrollan en el Instituto de Estructuras durante por lo menos 160 horas sin incluir las horas dedicadas al desarrollo de la tesis.
- Tesis de Magister: Implica realizar trabajos de investigación y/o desarrollo, bajo la supervisión de un Director, durante por lo menos dos semestres académicos y presentar los resultados en un informe escrito (tesis) que deberá:
 - i) Contener un relevamiento y análisis crítico de los trabajos publicados sobre el tema.
 - Mostrar evidencia de la capacidad del postulante en el uso de métodos y
 Constituto de la investigación científica.
 - iii) Constituir un aporte al tema elegido.
- Examen de Tesis: Implica obtener la aceptación de la Tesis y satisfacer las pruebas orales, escritas o prácticas sobre el tema de la misma y otros temas relevantes de dicha tesis ante el correspondiente Tribunal Examinador.
- Entrega de versión corregida de la Tesis: Para poder iniciar el trámite de expedición de diploma, el Magister deberá entregar previamente una copia impresa y una versión digital de la Tesis en la que se incorporen las modificaciones y/o correcciones indicadas por los miembros del Tribunal

Aranceles y Becas

Para los alumnos argentinos el arancel por cursos y tutorias es \$ 3000 y \$1500 por la Tesis.

Para alumnos extranjeros el arancel por cursos y tutorias es U\$S 3000 y U\$S1500 por la Tesis.

Existe además un arancel por asignatura para el caso de alumnos Argentínos no inscriptos en la carrera.

Los 5 (cinco) alumnos argentinos que resulten primeros en el orden de méritos establecido por la Comisión de Admisión serán eximidos del pago de aranceles.

DFB. SUSSATA H. MAIDANA SECRETARIA ACADEMICA UNIVERSIDAD NACIONAL A TUCUMAN

froi, Gr. JUAN ALBERTO CERISOLA 1.12 RECTOR Universidad Nacional de Tucumán

LIC. ADRIAN G. MORENO
DIRECTOR
Despacho Consejo Superior