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1 Introduction

1.1 Scientific framework and general overview

Cement-based materials like concrete and most of the cohesive-frictional media are

characterized by low strength and brittle response in low confinement and tensile stress

states. These deficiencies can be mitigated by randomly adding short reinforcements

into the cement mortar [Gettu, 2008].

Fiber-Reinforced Cementitious Composite (FRCC), obtained by randomly mixing short

fibers (made out of steel, plastic, natural materials, recycled reinforcements, etc.) into

conventional cementitious materials, is a structural material characterized by a signifi-

cant residual tensile strength in post-cracking regime and enhanced capacity to absorb

strain energy due to fiber bridging mechanisms across the crack surfaces [Brandt, 2008,

di Prisco et al., 2009, Nguyen et al., 2010]. In particular, fibers play a relevant role

in the post-cracking regime providing resistance to crack opening processes. In this

sense, Fiber-Reinforced Cementitious Composites (FRCCs) may results in a less brittle

and possible quasi-ductile behavior even in case of tensile loading, exhibiting strain-

hardening processes with multiple cracks and relatively large energy absorption prior

to failure. Composites with these relevant features take the name of High Performance

Fiber-Reinforced Cementitious Composites (HPFRCCs) [Naaman and Reinhardt, 2006].

Several recently published experimental researches, related to the mechanical charac-

terization of FRCC, allowed to clarify relevant aspects. Among others, it can be referred

the evaluation of the workability dependence on the fiber distributions by Ferrara and

Meda [2006], and that of the fiber orientations on the compaction procedures by Gettu

et al. [2005]. Experimental tests aimed at investigating the FRCC failure behavior in

compression and tension were performed, among others, by Ezeldin and Balaguru

[1992] and Barros and Figueiras [1999], respectively. Also, the work by Shannag et al.

[1997] that defines the mechanisms governing the fiber pull-out response, and those

by Buratti et al. [2011] and Tlemat et al. [2006] that analyze the post-cracking behavior

of three- and four-point bending tests, respectively. Finally, it should be also noted the

1



Chapter 1. Introduction

failure behavior evaluations of Steel Fiber Reinforced Concrete (SFRC) subjected to

multiaxial compressive states by Fantilli et al. [2011] and to the Brazilian test conditions

by Liu et al. [1997]. Moreover, fibers spread up within the concrete matrix also influence

its durability [Mechtcherine, 2012], as they control the crack opening and reduce the

diffusion phenomena which lead to corrosion [El-Dieb, 2009]. While the benefits of

fibers on strength and ductility were demonstrated in Valle and Buyukozturk [1993]

and Khaloo and Kim [1997] based on direct shear test results on FRCC specimens char-

acterized by different strength levels. Also, the positive effect of fibers on the dynamic

response under impact actions was also investigated by Xu et al. [2012].

Recent researches on Fiber-Reinforced Concrete (FRC) also addressed to the possi-

ble use of mixed fibers of different geometry and/or material which can, in princi-

ple, play a synergistic role in enhancing flexural and post-cracking response of FRC

members. This kind of fibrous cement-based composites are known as Hybrid FRC

(HyFRC). Experimental tests aimed at investigating the HyFRC failure behavior in

direct tension were performed, among others, by Sorelli et al. [2005] and Park et al.

[2012]. The mechanical behavior measured by means of indirect tensile tests were

proposed on Hy-Polypropylene FRC [Hsie et al., 2008], Hy-Steel FRC [Banthia and

Sappakittipakorn, 2007, Kim et al., 2011] or combining several material fibers: i.e., Car-

bon/Steel/Polypropylene FRC [Yao et al., 2003] or Steel/Palm/Synthetic FRC [Dawood

and Ramli, 2011, 2012]. The experimental results on contoured double cantilever beam

specimens with steel and polypropylene FRC was given by Banthia and Nandakumar

[2003]. Other relevant contributions regarding HyFRC with lightweight aggregates

[Libre et al., 2011], high-volume coarse fly ash [Sahmaran and Yaman, 2007], RC beams

with mixed fibers [Ding et al., 2010], HyFRC exposed to high temperatures [Chen and

Liu, 2004, Ding et al., 2012] or self compacting HyFRC [Ding et al., 2009, Dawood and

Ramli, 2010, Akcay and Tasdemir, 2012] are proposed by the scientific community.

In the recent past, several theoretical models were proposed for investigating the

mechanical behavior of cement-based material with or without fibers. Plenty of those

researches were recently proposed for investigating the fracture behavior on both plain

concrete [Bazant et al., 1990, Carol et al., 1997, Pandolfi et al., 2000, van Mier et al.,

2002] and FRCC [Radtke et al., 2010, Gal and Kryvoruk, 2011, Caggiano et al., 2011,

2012b, Cunha et al., 2012, Laranjeira et al., 2012, Pereira et al., 2012]. A more detailed

and comprehensive review on this topic is given in the following Sections 1.2 and 1.3.

1.2 Observation scale and modeling

A large amounts of theoretical models and numerical tools were proposed with the aim

to realistically predict the physical and mechanical properties of concrete at each size

scale. An extended literature review of the proposed constitutive theories for modeling

the concrete behavior on the above focus was given in Dolado and van Breugel [2011].
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1.2. Observation scale and modeling

Concrete and other cementitious materials are multiphase (composite) materials. At

macroscale, concrete can be considered as a homogeneous continuum material, while

at lower levels of observation, it is considered as a multiphase material as outlined in

Fig. 1.1.

Macroscale 

L � 10-1 m

Mesoscale

10-1 m �  L > 10-4 m

Coarse aggregate

Medium aggregate

Small aggregate

ITZ

Mortar matrix

a) b)

c) d)

Microscale 

10-4 m �  L > 10-6 m

Nanoscale

10-6 m �  L > 10-9 m

Figure 1.1: Concrete materials under different length scales: (a) macroscale continoum,
(b) 2-D meso-scale concrete analysis [Kim and Al-Rub, 2011], (c) modelling the hydra-
tion of cements at microscale [Bishnoi and Scrivener, 2009] and (d) simulations by
means of electrophilic and nucleophilic attack at a nanoscale standpoint [Puertas et al.,
2011].

Based on the above discussion and referring to the fibrous cements, it can be stated

that constitutive models, currently available in the scientific literature for simulating

the mechanical response of FRCC, can be classified on the basis of their observation

scale as proposed in the following subsections.

1.2.1 Structural-scale models

These models, based also on the general continuum approach, capture the essence of

structural members made of FRCC. Typical examples of structural-scale formulations

are those related to either cross-sectional moment versus curvature or panel shear

force versus lateral displacements. For instance, structural-scale formulations for
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FRCC structures were proposed by Stang and Olesen [1998] and Lee and Barr [2003]

who characterized the complete load-deflection curve for FRCC three-point beams, as

well as Billington [2010] that proposed a formulation for retrofit analysis of structures

made of ductile FRCC. Regarding bending behavior of FRCC beams a comprehensive

summary can be found in Zhang and Stang [1998] where different semi-analytical

models based on the stress equilibrium in critical cracked sections were presented.

1.2.2 Macro-scale models

In this case FRCCs were ideally considered as continuum media and modeled within

the theoretical framework of the smeared crack approach. Among the others, the con-

tributions by Hu et al. [2003], who proposed a single smooth biaxial failure surface for

FRCC, the one by Seow and Swaddiwudhipong [2005], who introduced a five parameter

failure criterion for FRCC with both straight and hooked-end steel fibers, and the paper

by Minelli and Vecchio [2006], who proposed a model based on a modification of the

compression field theory, are worthy of mention. Other relevant contributions can be

found in Beghini et al. [2007] and Guttema [2003].

1.2.3 Meso-scale models

Thereby the interaction among the different phases of the composite (i.e. fibers, matrix

and coarse aggregates and their interfaces) was explicitly considered. Key contributions

in this filed were due to Schauffert and Cusatis [2012] and Schauffert et al. [2012] who

considered the effect of fibers dispersed into a proposed lattice discrete particle model

(LDPM), as well as in Etse et al. [2012], Oliver et al. [2012] Vrech et al. [2010], Leung

and Geng [1998], Bolander and Saito [1997], Alwan et al. [1991], Stang et al. [1990], Etse

et al., among the others.

1.2.4 Microscale models

Micro-scale models were based on the observation scale in which the cement paste was

described in terms of their chemical constituents which thermodynamical reactions,

during the time, play a key role.

In this field, contributions dealing with the microstructure hydration/dehydration

concepts were often treated as competitive approaches for describing properties of

early age concrete (to see Schutter [2004], Camps et al. [2008] and Schlangen et al.

[2007]) and concrete degradation under high temperature (i.e., Pont and Ehrlacher

[2004], Ulm and Coussy [1999a] and Ulm and Coussy [1999b]), respectively.
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1.2.5 Nanoscale models

Atomistic simulations at nano-level were typically conceived within the modeling of

the cementitious crystals (namely, tobermorite and jennite). Particularly, several and

innovative researches were carried out on the description and modeling the crystalline

phases of cementitious materials such as the C3 A [Manzano et al., 2009b], etringite

[Manzano et al., 2008], C3S, β−C2S and portlandite [Manzano et al., 2009a].

1.2.6 Multi-scale models

In these models coupling effects of the different scales of observation were taken into

account: i.e. nano-, micro-, meso-, macro- and structural scales of observation. The

objective of these formulations is to develop an efficient approach to simulate the

intrinsic multi-scale and multi-physics nature of the problem under consideration

[Kabele, 2002, Hund and Ramm, 2006].

1.3 Crack modeling strategies and approaches

The mechanical behavior of concrete-based materials is greatly affected by crack prop-

agation under general stress states. The presence of one or more dominant cracks

in a concrete member modifies its structural behavior, possibly leading to brittle fail-

ure modes. The random dispersion of short steel fibers in cement materials is a new

methodology used for enhancing the response in the post-cracking regime. Particularly,

as the behavior of Fiber-Reinforced Cementitious Composite (FRCC) compared to

conventional plain concrete, is characterized by several advantages, e.g., higher tensile

and shear resistance, better post-cracking ductility, higher fracture energy, etc.

Figure 1.2: Numerical specimens based on the EFG method by Belytschko et al. [1995]
for the near-tip crack problems.

Theoretical models and numerical procedures are needed for describing both cracking
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onset and propagation in non-homogeneous quasi-brittle materials such as FRCC. In

fact, simulating cracking phenomena in solids is still an open issue in computational

mechanics. Concrete cracks were traditionally treated by means of classical contin-

uum or smeared-crack approaches in which the fracture zone was considered to be

distributed in a certain region of the solid [De Borst and Guitierrez, 1999]. Despite its

advantages from the computational point of view, classical concrete models based on

the smeared crack approach suffered a strong FE-size dependence of the localization

band width, see a.o. Oliver [1989], Rots et al. [1985] and others. Different regulariza-

tion procedures were proposed to avoid this severe deficiency of the smeared-crack

approach. On the one hand, continuum models were based on fracture mechanics

concepts leading to fracture energy release regularization but still suffering from loss of

objectivity of the deformation pattern. Fracture energy-based concrete models were,

among others, due to Bazant and Oh [1983], Willam et al. [1984], Etse and Willam [1994],

Shah [1990], Carpinteri et al. [1997], Comi and Perego [2001], Duan et al. [2007] and

Meschke and Dumstorff [2007]. On the other hand, more sophisticated constitutive

theories were proposed to solve the strong mesh dependency which appears when the

governing equations turn ill posed. They were based on rate dependency, higher strain

gradients, micropolar theory, etc. Among others it can be referred here the contribu-

tions by Vardoulakis and Aifantis [1991], de Borst et al. [1995], Peerlings et al. [2004],

Lee and Fenves [1998], Carosio et al. [2000], Etse et al. [2003], Vrech and Etse [2009], etc.

Discrete Crack Approaches (DCAs) aimed at incorporating strain or, moreover, dis-

placement discontinuities into standard FE procedures have progressively became an

attractive and effective alternative to the smeared-crack approach. Several proposals

in the last years were currently available to introduce crack discontinuities within FE

domains and are outlined in the following paragraphs.

(a) (b) (c)

Figure 1.3: Meso-mechanical simulation by means of the beam lattice model [Lilliu
and van Mier, 2003]: (a) the geometry, (b) definition of matrix, interface and aggregates,
then (c) the crack pattern simulation.

Element-Free Galerkin (EFG): this method represents an another attractive tool for

modeling the propagation of material cracks. The EFG approach differs from the

classical Finite Element Method (FEM) because the discretization was achieved by

only nodal data (Fig. 1.2): no element connectivity was stated. The description of the
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1.3. Crack modeling strategies and approaches

geometry and the numerical model formulation of the problem was given only on a

set of nodes jointly with a description of exterior and interior boundaries. Significant

contributions to static elasticity and fracture mechanics were given in Belytschko et al.

[1995], Belytschko et al. [2000], Singh et al. [2011] and Zhang et al. [2008].

Lattice models: within the framework of discontinuous crack approaches and fracture

behaviors of concrete elements, the lattice-based model was a simple and effective

tool for understanding the physics of fracture processes [Yip et al., 2006]. Lattice type

models can be based on either truss elements [Schorn and Rode, 1987] or beam ones

[Lilliu and van Mier, 2003].

Figure 1.4: Unnotched specimens in tension of various sizes with randomly generated
particles by Bazant et al. [1990].

Particle models: these models were based on the formulation of the microscopic inter-

particle contact layers of the matrix particles [Jirasek and Bazant, 1994]. The pioneer

proposals of particle simulation were reported in the works of Cundall [1971], Rodriguez

[1974] and Kawai [1980]. These works mainly modeled the behavior of granular solids

(such as sand) considering rigid particles that interacted by friction. Furthermore, a

particle model for brittle composite materials was proposed by Zubelewicz and Bazant

[1987] and Bazant et al. [1990], for simulating cracking localization in concrete elements.

Fig. 1.4 outlines several particle schemes adopted by Bazant et al. [1990] for studying

the size effect on the failure load for unnotched specimens in tension.

Strong discontinuity approaches: they allowed for displacement discontinuities into
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Figure 1.5: Elemental (E-FEM) and eXtended (X-FEM) enrichment approaches [Oliver
et al., 2006].

the finite element formulations for capturing arbitrary crack propagation with a fixed

FE mesh without loss of mesh objectivity. Particularly, new types of finite elements,

essentially formulated for enriching the (continuous) displacement modes with ad-

ditional discontinuities, were proposed. It can be distinguished two broad families

dealing with the techniques aimed at enriching the discontinuous displacement modes:

• the Embedded strong discontinuity Finite Elements (E-FEM), proposed among

others by Dvorkin et al. [1990], Oliver et al. [2002], Oliver [1996] and Armero

and Linder [2009], which were able to reproduce displacement jumps through

elemental discontinuity enrichments (Fig. 1.5a), and

• the eXtended Finite Element Method (X-FEM) which captured the discontinuity

by means of nodal enrichments (Fig. 1.5b) by Wells and Sluys [2001] and Liu et al.

[2011].

An interesting comparison between the E-FEM and X-FEM approaches, to model strong

discontinuities in concrete materials, was proposed by Oliver et al. [2006].

Zero-thickness interface models: an alternative approach for discrete finite element

failure analysis was represented by interface crack models. Zero-thickness joints con-

nect continuum solid elements throughout potential crack lines as outlined in Fig. 1.6.

The material failure in crack processes was captured by means of those elements for

discrete constitutive analyses, relating contact stresses (in normal and/or tangential

direction) and the relative displacements (crack opening and sliding) with specific

constitutive models, e.g., Hillerborg et al. [1976], Carol et al. [1997], Pandolfi and Ortiz

[2002], Lorefice et al. [2008], etc. Interface formulations may only include traction-

separation laws [Olesen, 2001, Oh et al., 2007, Buratti et al., 2011] or, eventually, consti-

tutive relations based also on the more complex mixed-modes of fracture [Carol et al.,

1997, Hillerborg et al., 1976, Pandolfi et al., 2000, Park et al., 2010].
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1.4. Fiber-reinforced cementitious composites: Codes and Standards

Figure 1.6: FE discretization [Lopez et al., 2008a,b] of (a) 6 x 6 aggregate-arrangement,
(b) matrix, (c) coarse aggregates and (d) interfaces.

Among the different procedures in the framework of the discrete crack approach, the

one based on zero-thickness interface elements was particularly interesting due to

the simplicity of the involved numerical tools as the non-linear kinematics were fully

defined in the displacement field.

1.4 Fiber-reinforced cementitious composites: Codes and Stan-

dards

1.4.1 State-of-the-art review

In the last decades, a large amounts of studies were performed in order to better under-

stand the mechanical properties of Fiber-Reinforced Cementitious Composite (FRCC).

However for many years, the lack of international codes, standards and guidelines for

the design purpose of FRCC members slowed its expansion in structural application. As

a matter of fact, the use of FRCC was principally limited to non-structural applications

such as cracking control, durability enhancements, etc.

The incorporation of fibers as reinforcements substituting (even if in partial substitu-

tion) the classical steel rebars was strongly considered in the last twenty years, after
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the publication of many design guidelines and codes in Europe: for example, the Swe-

den code [Stalfiberbetong, 1995], the Swiss recommendations [SIA-162-6, 1999], the

German code [DBV, 2001], the Austria guidelines [Faserbeton-R, 2002], the French rec-

ommendations [AFGC-SETRA, 2002], the guidelines provided by the RILEM Committee

[RILEM-TC162-TDF, 2003], the Italian codes [UNI-11039-1, 2003, UNI-11039-2, 2003,

UNI-11188, 2004, CNR-DT-204, 2006], the Spanish code [EHE08, 2008] and the very re-

cent new fib Model Code [fib Model-Code, 2010a]. Further design considerations were

introduced by the American standards ACI-544.4R-88 [1996] and ACI-318-08/318R-08

[2008].

Some of these codes explicitly distinguished non-structural against structural appli-

cations based on the fiber types and dosages employed in such an applications. Par-

ticularly FRCC for structural members are that able to guarantee minimum FRCC

performance (mainly measured in terms of toughness indexes or post-cracking param-

eters: see for example UNI-11039-1 [2003]).

Several constitutive models were proposed in current national and international codes

in order to design FRCC structures. These constitutive proposals principally deal

with tensile formulations through either stress-strain (σ-ε) or stress-crack opening

displacement (σ−w) curves [Blanco et al., 2013].

Despite the large variety of existing constitutive models for FRCC designs, this section

is aimed at reviewing and classifying the main proposals given by standards and rec-

ommendations available in literature. Particular focus will give in Subsection 1.4.2 to

the fib Model-Code [2010a] which is largely considered as the worldwide reference for

FRCC in structural applications.

The post-cracking tensile behavior and the parameters which identify such a relation-

ship represent the key ingredients in design for FRCC members. On the one hand there

are several guidelines which propose a different type of σ− ε diagram to be used for

design purposes: i.e., the rectangular shapes given by DBV [2001], CNR-DT-204 [2006],

EHE08 [2008], fib Model-Code [2010a], the bilinear proposals [DBV, 2001, CNR-DT-204,

2006], trilinear relationships [DBV, 2001, RILEM-TC162-TDF, 2003] and multilinear

models [DBV, 2001, fib Model-Code, 2010a] (Fig. 1.7).

On the another hand the main parameters which define each one of the above models

are derived by means of experimental tests which recommendations are given by others

companion codes. It can be taken as reference the test recommendations of several

countries such as Italy [UNI-11039-1, 2003, UNI-11039-2, 2003], USA [ACI-544.2R-

89, 1996, ASTM-C-1018, 1998], Spain [UNE-83510, 1989], France [NFP-18409, 1993],

Belgium [NBN-B-15-238, 1992], Japan [JSCE-SF4, 1984], Germany [DIN-1048, 1991],

Netherlands [CUR, 1994], Norway [NB, 1993], EU standards [EN-14651, 2005] and the

Rilem international test procedure [RILEM-TC162-TDF, 2002].
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Figure 1.7: Constitutive σ−ε laws for the tensile behavior of FRCC: a) rectangular and
b) bilinear shapes [CNR-DT-204, 2006], c) trilinear law [RILEM-TC162-TDF, 2003] and
d) multilinear rules [fib Model-Code, 2010a].

These codes mainly were used as guide to experimentally obtain two quantities alter-

natively adopted in design: (i) the equivalent flexural tensile strength ( feq ) otherwise

the residual flexural tensile strength ( fR ). The first one ( feq ) is related to the work

absorption capacity of the material, derived by means of the area enclosed under the

experimental force-crack tip opening displacements [Caggiano et al., 2012a] while the

second parameter ( fR ) corresponds to the stress associated to the force at a certain

deflection measures or crack opening values [Barros et al., 2005].

1.4.2 The new fib Model Code 2010

Recently, the lack of the international guidelines and codes for Fiber-Reinforced Con-

crete (FRC) elements in structural applications was strongly filled by means of the

publication of the new fib Model-Code [2010a] which aims at updating and reviewing

the previous CEB-FIP-90 [1993]. In this regard, FRC was introduced into the “Technical

Groups fib TG 8.3” (Fibre reinforced concrete) and “fib TG 8.6” (Ultra high performance

FRC). In this subsection the fundamental assumptions and the main design guides for

FRCC, proposed into the fib Model-Code [2010a], are reported and discussed.
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Uniaxial behavior: compressive and tensile stress-strain

One of the most important aspect regarding the mechanical response of FRC was repre-

sented by its behavior in tension. Different test methods were possible for assessing

the post-cracking behavior of FRC. However, the bending test on prismatic specimens

was the most popular and widely used experimental technique. It is relatively simple to

realize and can be representative of many practical situations.

Figure 1.8: Experimental set-up and geometry details of the notched beams under
three-point bending test [fib Model-Code, 2010a].

The fib Model-Code [2010a] considered residual flexural tensile strengths determined

by performing 3-point bending tests (Fig. 1.8) on notched prisms according to EN-

14651 [2005]. Particularly, the residual flexural tensile strengths, fR, j , were defined

as

fR, j =
3F j l

2bh2
sp

(1.1)

being l and b the span length and width of the specimens, respectively, while hsp is

the distance between the notch tip and the top of the specimen; the j index refers

to the considered Crack Mouth Opening Displacement (CMOD); then F j is the load

corresponding to C MOD =C MOD j .

At last, the fib Model-Code [2010a], and as generally accepted into the worldwide guide-

lines, deals with the assumption that the compressive relations valid for plain concrete

can further be applied to FRC.
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1.4. Fiber-reinforced cementitious composites: Codes and Standards

Post-cracking strength and classification

The post-cracking strength in hardening or softening FRC is a material parameter

which varies with the increasing crack opening displacement. Two crack values were

typically considered: from one hand it was considered the opening crack which was

significant for Serviceability Limit State (SLS) verifications, on the other hand a second

crack should be significant for the Ultimate Limit State (ULS) [Eurocode-2, 2004].

The European standard EN-14651 [2005] proposed four different residual strengths: i.e.,

fR1, fR2, fR3 and fR4 (Fig. 1.9). They corresponded to specific values for the C MODs:

C MOD1 = 0.5mm, C MOD2 = 1.5mm, C MOD3 = 2.5mm and C MOD4 = 3.5mm, re-

spectively. Particularly, fR1 and fR3 were the FRC residual strengths representative for

the SLS and ULS, respectively.

CMOD [mm]

CMOD1 = 0.5 CMOD2 = 1.5 CMOD3 = 2.5 CMOD4 = 3.5

fR1

fR2

fR3

fR4

fL

σN

[MPa]

Figure 1.9: Typical curve of the nominal stress versus CMOD for FRCC [EN-14651,
2005].

Then, post-cracking residual strength and FRC toughness can be classified by using

two parameters: the first one outlined the strength class and it was given by fR1, while

the second parameter (represented by a letter "a", "b", "c", "d" or "e") recognized the

ratio between fR3 and fR1. Particularly, the strength classes, based on the characteristic

value of fR1, were defined through the following values of ratio: 1.0 (if fR1,k ≥ 1.0 MPa),

1.5 (if fR1,k ≥ 1.5 MPa), 2.0 (if fR1,k ≥ 2.0 MPa), 2.5 (if fR1,k ≥ 2.5 MPa), 3.0 (if fR1,k ≥
3.0 MPa), 4.0 (if fR1,k ≥ 4.0 MPa), 5.0 (if fR1,k ≥ 5.0 MPa), 6.0 (if fR1,k ≥ 6.0 MPa), 7.0

(if fR1,k ≥ 7.0 MPa) and 8.0 (if fR1,k ≥ 8.0 MPa).

The fR3/ fR1 ratio can be represented with the letters "a", "b", "c", "d" and "e", corre-

sponding to the following characteristic strength values:

• "a" if 0.5 ≤ fR3,k / fR1,k ≤ 0.7;

• "b" if 0.7 ≤ fR3,k / fR1,k ≤ 0.9;

• "c" if 0.9 ≤ fR3,k / fR1,k ≤ 1.1;
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• "d" if 1.1 ≤ fR3,k / fR1,k ≤ 1.3;

• "e" if 1.3 ≤ fR3,k / fR1,k .

According to fib Model-Code [2010a], in practical design minimum mechanical perfor-

mances were required to FRC. Particularly, fiber reinforcement can be used in substi-

tution (even partially) of conventional reinforcement at the ultimate limit state, if the

following relationships were respected

• fR1,k / fL,k > 0.4 MPa

• fR3,k / fR1,k > 0.5 MPa

being fL,k the characteristic value of the nominal strength corresponding to the peak

load (or the highest load value in the CMOD range 0−0.05mm) according to the test

specimen of EN-14651 [2005].

Constitutive laws for Limit State Analyses

Two alternative stress-crack opening relationships, as schematically proposed in Fig.

1.10, were considered by fib Model-Code [2010a] for the ULS:

• a rigid-plastic model, based on a unique reference strength, fF tu . Such a value

was determined by means of the following relationship

fF tu = fR3

3
(1.2)

rigid-plastic

f
Ftu

f
F

crack-hardening
f
Ftu

crack-hardening

f
F

hardening/softening post-crack 
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f
Ftu

f
Fts crack-softening

f
Ftu crack-softening

f
Fts

w
u w

w
u w

Figure 1.10: Post-cracking constitutive laws for ULS states [fib Model-Code, 2010a].

• a linear post-cracking behavior (hardening, perfectly plastic or softening) was

formulated by means of two strength values: i.e., fF t s and fF tu . These quantities

used for the rigid-linear diagram of Fig. 1.10b were defined through the following

equations

fF t s = 0.41 fR1 (1.3)
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fF tu = fF t s −
wu

C MOD3

(
fF t s −0.5 fR3 +0.2 fR1

)≥ 0 (1.4)

Therein fF t s was the serviceability residual strength, relative to a crack opening value

representative for the SLS analysis, while fF tu represented the post-cracking strength

for the ULS. At last wu is the maximum crack opening accepted in structural design

and its value depends on the ductility required.

When concrete cracks are treated by means of classical smeared-crack models, as

traditionally adopted in design procedures, the fracture zone must necessarily be

considered as distributed in a certain region of the body. Based on this, classical

models behaves with a loss of objectivity under softening responses. Actually, the

definition of a stress-strain law is based on the identification of a crack width and on

the corresponding structural characteristic length. The link between the stress-crack

(σ− w) law and the stress-strain (σ− ε) constitutive relationship was given by the

introduction of a characteristic length, lcs ,

ε= w/lcs . (1.5)

The characteristic length, for elements with conventional rebars, may be calculated as

lcs = min{sr m , y} (1.6)

being sr m the mean distance between successive cracks while y represents the distance

between neutral axis and tensile side of the cross section. Further details can be

recognized into the fib Model-Code [2010a].

In sections without traditional reinforcement in bending, under combined tensile-

flexural or combined compressive-flexural stresses, with resulting force external to the

cross-section, the simplified expression of y = h (being h the specimen height) can

be assumed due to the very reduced extension of the compressed region. The same

assumption can be taken for slabs.

In case of serviceability limit states analysis, the constitutive relationship adopted for

plain concrete in uniaxial tension, was also used up to the peak strength fct . Then, in

post-cracking regime, the multilinear laws given in Fig. 1.7d were considered. The post-

cracking residual strength is defined by means of two points corresponding to (εSLS ,

fF t sd ) and (εU LS , fF tud ), where εSLS and εU LS were defined according to the considered

limit states as outlined by the fib Model-Code [2010a].
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Partial safety factors

Based on the stress-crack opening displacement relationship given in Fig. 1.10 and

used for the ULS-design, the following strength values were considered

ft sd = ft sk

γF
(1.7)

and

ftud = ftuk

γF
(1.8)

where the recommended values for the material partial safety factors γF were given

according to fib Model-Code [2010a]:

• FRC in compression: γF as for plain concrete;

• FRC in tension (limit of linearity): γF as for plain concrete;

• FRC in tension (post-cracking residual strength): γF = 1.5.

At last, for serviceability limit states, the partial factors should be taken as 1.0.

Design of FRC structures

The above constitutive laws and post-cracking strengths were then used for design

rules as outlined in the “PART III: DESIGN” of fib Model-Code [2010b]. For the sake of

brevity, the description of the design rules was omitted in this work. These details are

beyond the scopes of the present thesis. However, further details can be founded in the

fib Model-Code [2010b].

1.5 Thesis theoretical framework and methodology

The main objective of this thesis concerns the development of a 2D numerical model

aimed at analyzing cracking phenomena in fiber-reinforced concrete and involving

the explicit characterization of fiber effects on concrete cracks from a mesostructural

point of view. Particularly, in this work an interface constitutive model for mesoscopic

fracture analysis of FRCCs was firstly presented. For this purpose, FRCC can be regarded

as a four-phase material (Figs. 1.11), composed by:

• (i ) coarse aggregates,

16



1.5. Thesis theoretical framework and methodology

Figure 1.11: 2D meso-structure geometry: (a) Delaunay triangulation/Voronoi tessella-
tion [Idiart, 2009], (b) FRCC meso-probe, (c) coarse aggregates and (d) position of the
interface elements.

• (i i ) plain mortar,

• (i i i ) plain interfaces modeling the cementitious matrix-to-coarse aggregate in-

teraction and

• (i v) FRCC interfaces for the matrix-to-matrix crack modeling.

Only the coarse aggregates were explicitly discretized in the FE mesh and embedded

in a matrix phase representing the cementitious mortar plus smaller aggregates and

fibers. In principle, a explicit meso-geometry permits to correctly model fracture and

failure processes in concrete which are generally governed by the main heterogeneities

in the composite. A convex polygonal representation was adopted for representing the

large aggregates. The polygonal geometry was numerically generated though standard

Voronoi/Delaunay tessellation [Klein, 1989] from a regular array of points which was

slightly perturbed as shown in Fig. 1.12. Both the polygonal particles and the space

between them (surrounding matrix) were meshed with finite elements for generating

the modeling analysis. The continuum elements obtained by means of the above pro-

cedure were assumed to be linear elastic, whereas all nonlinearities were concentrated

within zero-thickness interface elements defined throughout the adjacent edges of the

meshed elements. Non-linear fracture-based laws and fiber actions (in terms of both

bridging and dowel effects) were introduced in those interface elements according to

the formulation outlined in this thesis. In particular, aggregate-matrix interfaces did

not consider the effect of fibers, while matrix-matrix ones took into account the contri-

bution of passing through fibers. As a matter of fact, interface elements represented
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the potential crack patterns which can develop during the analysis process.

Figure 1.12: (a) Initial regular 2D distribution, (b) randomly perturbed positions, (c)
superposition of the points and (d) Voronoi/Delaunay tessellation.

The non-linear behavior of steel fiber-reinforced concrete/mortar was fully captured

by means of the model formulation for zero-thickness joint elements [Caggiano et al.,

2012b]. The constitutive proposal was based on the original idea of Carol et al. [1997]

modified and extended to fiber concrete composites on the basis of the well-known

“Mixture Theory” [Trusdell and Toupin, 1960] also employed by Manzoli et al. [2008] for

RC members. Actually, the following four “ingredients” were accounted with the aim of

formulating the post-cracking behavior of FRCC materials:

• (i ) the reformulation of a fracture-based interface model for simulating the mixed

cracking modes occurring in cement-based materials,

• (i i ) the adoption of the well-known “Mixture Theory” to combine the composite

response,

• (i i i ) the fiber-to-surrounding concrete bond-slip behavior and at last

• (i v) the dowel effect between concrete cracks and crossing fibers.
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It is important to note that the entire progress made in the modeling of the fiber

effects on concrete composites and on concrete mortars was classically based on the

continuum smeared crack approach. This included most of the proposals related to

macro-scale models where the fiber-reinforced matrix was considered as a continuum.

As it is well known, classical or continuum models for simulating quasi-brittle materials

like concrete were characterized by strong FE-size dependence of the localization band

width and, consequently, to a loss of objectivity of their results.

On the contrary, in Discrete Crack Approaches (DCAs), the discontinuity of the displace-

ment field due to cracking was directly accounted into the finite element formulation.

The most effective procedure to use the DCA was the one based on interface elements.

The zero-thickness interface formulation, proposed in this thesis, was particularly inter-

esting due to the simplicity of the involved numerical tools as the non-linear kinematics

were fully and directly defined in the displacement field.

1.6 Thesis structures and main contents

After this Introduction chapter, the thesis is structured as outlined in the following

descriptive paragraphs.

At first, Chapter 2 reports the results of an extensive experimental campaign realized

on several prismatic concrete specimens, which were cast by using different types and

amounts of steel fibers and successively tested under four-point bending. Particularly,

it was analyzed Steel Fiber-Reinforced Concrete (SFRC) specimens prepared with two

different fiber contents (i.e., 0.5% and 1.0% of volume fraction). Moreover, for each

fiber content, five different combinations of long and short fibers were considered with

the aim of investigating the possible influence of those combination on the resulting

behavior of SFRC specimens.

Chapter 3 presents a novel model for Fiber-Reinforced Cementitious Composites

(FRCCs) based on a cohesive-frictional interface theory. The formulation of a zero-

thickness joint model was given for simulating the fracture behavior at meso-phases

level of fiber-reinforced concretes. In particular, the "Mixture Theory" was used for de-

scribing the coupled action between concrete and fibers. Then, the softening behavior

of the interface model due to crack propagation was outlined by means of an incremen-

tal approach, which was similar to the one usually adopted in the classical flow theory

of plasticity. A novel bond-slip model was presented, in order to correctly simulate the

axial effect of fibers on concrete cracks. Also, the composite action between concrete

and fiber reinforcements was also completed by considering the transversal fiber effect

by means of a dowel model.

Chapter 4 reports the explicit formulation for simulating the debonding behavior of

fibers embedded in cementitious matrices. Such a formulation was based on assuming
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a bond model between interface stresses against the corresponding relative displace-

ments. The considered formulation addresses the behavior of fibers under tensile axial

stresses which resulted in a “mode II” debonding phenomenon. The proposed unified

formulation was straightforwardly employed into the interface proposal described in

Chapter 3. The adoption of the presented formulation within the general framework

of discontinuous cracking models of FRCC was, at the same time, the key motivation

and the most relevant development of the Chapter 4. At the ultimate part of the same

chapter, numerical analyses for validating the proposed formulation against relevant

experimental pull-out results was discussed.

In Chapter 5, the numerical results realized for estimating the soundness and capa-

bilities by using the proposed interface model in FRCC specimens were presented. In

the first section, the interface model was just calibrated by using experimental results

performed on SFRC probes tested under pure tensile stress cases by considering the

experimental tests by Li et al. [1998]. Furthermore, the stress history on plane concrete

panels by Hassanzadeh [1990] were considered to asses the predictive capability of

the model in terms of failure behavior of SFRC specimens in mixed-modes of fracture.

Next, the second section was intended to study the incidence of steel fibers on the

post-cracking performance for several stress states under overall possible failure modes.

For this purpose, several interface cracking conditions were considered and analyzed

through a defined “cracking indicator”.

Chapter 6 explores the analyses of boundary value problems by means of the Finite

Element Method in order to show numerical simulations at structural level carried

out with the proposed interface constitutive model. The attention of this Chapter was

focused on the analysis of the failure behavior of Steel Fiber-Reinforced Concretes

(SFRCs) evaluated at both macro and mesoscale levels of observation.

Chapter 7 deals with a nonlinear cracked hinge model aimed at reproducing the bend-

ing fracture behavior of fiber-reinforced concrete beams. The model was based on the

fracture mechanics concepts of the fictitious crack model where the stress-crack open-

ing relationship was accounted in a similar way obtainable by considering the pure

“mode I” case of the discontinuous proposal formulated in Chapter 3. A closed-form

solution for the stress-crack opening relationship with the explicit consideration of the

fiber effects was presented. The applicability of this simplest model was demonstrated

by simulating the bending fracture specimens under four-point bending conditions,

objects of the Chapter 2.

Finally, Chapter 8 summarized the main final remarks and conclusions which can

be figure out from this work. Also, further developments and the straightforward

extensions of this work related to both continoum and discontinuous mechanical

analyses of quasi-brittle materials, will be proposed and discussed.
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2 Experimental characterization of
concrete beams reinforced with
mixed long/short steel fibers
This section presents the results of an experimental activity carried out on Fiber-

Reinforced Concrete (FRC) obtained by mixing short and long hooked-end steel fibers.

Eleven mixtures were considered including plain concrete as a reference and Steel FRC

with 0.5% and 1.0% of fiber volume fractions. The experimental campaign was aimed

at observing the key aspects of the mechanical behavior of FRC in bending. Notched

plain and fiber-reinforced concrete specimens were tested under 4PB according to

UNI-11039-1 [2003] and UNI-11039-2 [2003]. Particularly, the study was focused on

examining the results of Four-Point Bending (4PB) tests performed on notched prisms.

The structural behavior was evaluated in terms of traction-separation law of FRC and

the possible influence of both amount and type of fibers was investigated.

In Section 2.1, a short overview of the standards and codes, dealing with the flexural

test experiments in FRCC, will be proposed. Then, Section 2.2 describes the analyzed

mixtures and experimental test methods employed in the present research. Section

2.3 reports the experimental results of both compressive and four-point bending tests.

Finally, some concluding remarks are given in Section 2.4.

2.1 Flexural tests for obtaining residual strengths

Steel Fiber-Reinforced Concrete (SFRC), obtained by mixing short fibers and cement-

based mixtures, are becoming extensively used materials in civil engineering applica-

tions, particularly those related to structures [Ferro et al., 2007, di Prisco et al., 2009].

Main benefits of SFRC are the very high ductility improvement of structural compo-

nents and the significant enhancement of residual strengths in final or cracked stage

[Barros and Figueiras, 1999]. The superior ductility of structures made of SFRC, par-

ticularly in post-peak regimes, were typically observed, under both pure mode I type

of failure [Gopalaratnam and Gettu, 1995] and mixed failure modes [Carpinteri and

Brighenti, 2010], through flexural tests.
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Several National and International Codes deal with the flexural test methods for mea-

suring the relevant mechanical properties of FRC [JSCE-SF4, 1984, UNE-83510, 1989,

NBN-B-15-238, 1992, NFP-18409, 1993, ASTM-C-1018, 1998, SIA-162-6, 1999, DBV,

2001, RILEM-TC162-TDF, 2002, UNI-11039-1, 2003, UNI-11039-2, 2003, EN-14651,

2005, DAfStB, 2010].

The bending test of prismatic specimens is the most popular and widely used exper-

imental technique for assessing the post-cracking behaviour of FRC. It is relatively

simple to realise and can be representative of many practical situations. The specimens

are supported on two points and can be loaded in one or two points to obtain Three-

Point Bending (3PB) [Olesen, 2001, Zhang and Li, 2004, Carpinteri and Brighenti, 2010]

or Four-Point Bending (4PB) tests [Banthia and Trottier, 1995, Oh et al., 2007].

The results of a bending test can be represented by the load - vertical displacement

curve [Gopalaratnam et al., 1991, Barros et al., 2005, Kim et al., 2008] or, in case of

notched specimens, throughout the flexural load against the Crack (Tip or Mouth)

Opening Displacement (C T OD or C MOD , respectively) [Oliver et al., 2006, Park et al.,

2010, Buratti et al., 2011]. The main purpose of the test is to determine the enhanced

toughness of FRC compared to conventional concrete.

2.2 Experimental campaign

Several notched specimens were fabricated and tested for examining the mechanical

properties of plain and fiber-reinforced concrete. Eleven mixtures, made with two

different types of steel fibers and various amount of them, were considered. Moreover,

a mixture of plain concrete without fibers was taken as reference and labeled as “REF”.

The tests were performed according to UNI-11039-1 [2003] for definitions, classification

and designation and UNI-11039-2 [2003] for the test method. The most important

aspects of the experimental campaign are described in the following.

2.2.1 Materials

The mixtures considered in the present research were made by employing a maximum

aggregate size of 20 mm according to UNI-EN-12620 [2002] and UNI-11039-1 [2003]

specifications, a constant cement content of 320 kg /m3 and a water to cement ratio

w/c of 0.51. Table 2.1 describes the mix of the reference concrete. Coarse natural

aggregates were defined as N 1 when the grain dimension ranges between 2 and 10 mm

and N 2 for the grain size from 10 to 20 mm, while fine aggregates (namely sand) had a

maximum aggregate size equals to 2 mm as shown in Fig. 2.1. The aggregate grading of

the reference concrete in comparison with the classical Fuller grain size distribution is

proposed in Fig. 2.2.
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Figure 2.1: Fine and coarse aggregates employed in the experimental campaign.

Table 2.1: Mix design per cubic meter of the reference concrete.

Material Density Absorption Dosage 

Sand 2690 kg/m
3 

1.20 % 1012 kg 

Coarse agg. N1 2690 kg/m
3
� 0.70 % 134 kg 

Coarse agg. N2 2690 kg/m
3
� 0.50 % 764 kg 

Cement 42.5R 3030 kg/m
3 

- 320 kg 

Water 1000 kg/m
3
 - 180 lt 

Water absorption 1000 kg/m
3
 - 17 lt 

Superplasticizer 1050 kg/m
3 

- 2.7 lt 

Two types of steel reinforcements were employed in FRCs: Wirand Fibers FF3 type

(namely “long fibers”) and Wirand Fibers FS7 type (“short fibers”) as shown in Fig. 2.3.

Table 2.2 outlines the geometric and mechanical properties of fibers. The aspect ratio

of the ‘long” and “short” steel fibers are 67 and 60, respectively, and the number of

fibers/kg are 5700 and 16100, respectively.

Table 2.2: Geometric and mechanical properties.

Fibers Diameter Length Tensile strength Ultimate strain 
Wirand FF3 0.75 mm 50 mm > 1100 MPa < 4% 

Wirand FS7 0.55 mm 33 mm > 1200 MPa < 2% 

�

�

�

�

�

�

�

�

�

2.2.2 Test method

Tests were carried out according to the procedures described in UNI-11039-2 [2003].

Particularly, prismatic 150×150×600 mm3 specimens were tested in displacement

control under four-point bending scheme as shown in Fig. 2.4(a). The main geometry

of the adopted beams is given in Fig. 2.4(b).

Each specimen was preliminarily cracked through a vertical notch (approximately 2.0

mm wide) starting from the bottom surface of the sample and for a depth of 45mm.

The specimens were tested under displacement control (having displacement rate
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Figure 2.2: Grain size distribution of the “REF” mixture.

Figure 2.3: Fiber types: FS7 (short fiber) and FF3 (long fiber).

of 0.005 mm/mi n.) by recording the load by means of a load-cell as in Fig. 2.5(a),

the displacements and the crack openings. The latter were measured by means of

dedicated displacement transducers, as shown in Fig. 2.5(b), which measured the

relative displacements of the two sides of the notch.

2.2.3 Test programme

Three series of specimens were tested (Table 2.3): plain (or reference) concrete speci-

mens (labeled as “REF”) and steel fiber-reinforced specimens with 0.5% and 1.0% of

fiber content. All specimens were cast by using the concrete mix given in Table 2.1 with

the exception of the superplasticizer. Its quantity was duly adjusted in each mixture

with the aim to obtain a comparable workability measured by a slump value about

equals to 150 mm. The prismatic concrete specimens were cured under water (100%

humidity) at a constant temperature of 22oC , for 28 days as in Fig. 2.6.

For each mixture, three beams were cast and tested in four-point bending. Moreover,

three cubes of 150×150×150 mm3 (Fig. 2.7) were also cast in polyurethane molds [EN-

12390-3, 2009] and then tested (in displacement control) for measuring the compressive
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Figure 2.4: Four-point bending test: (a) experimental set-up and (b) geometry of the
notched beams.

(a)                                      (b)

Figure 2.5: Four-point bending test: (a) load-cell and (b) crack opening transducers.

strength of the SFRCs at the time of testing. One of them (labeled as “white”) was

extracted before the mixing of fibers with the aim to capture the actual contribution of

fibers on the compressive response of the considered SFRC.

2.3 Experimental results

The main mechanical proprieties determined in the experimental tests are presented

in the following subsections. At first, concrete specimens tested under compression

will be given in subsection 2.3.1, then the experimental results on prismatic beams

loaded in four-point bending tests will be detailed in the subsection 2.3.2.

2.3.1 Compression

The mechanical compressive results are summarized in Table 2.4 in terms of cube

compressive strengths. The same table also reports the density mean values measured
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Table 2.3: Considered mixture types of the experimental programme.

Mixture Amount of Fibers Long fibers (FF3) Short fibers (FS7) 

REF - - - 

S100 - 05 40 kg/m
3
� - 100 % 

S75   - 05 40 kg/m
3
� 25 % 75 % 

LS50 - 05 40 kg/m
3
� 50 % 50 % 

L75 - 05 40 kg/m
3
� 75 % 25 % 

L100 - 05 40 kg/m
3
� 100 % - 

S100 -10 80 kg/m
3
� - 100 % 

S75 - 10 80 kg/m
3
� 25 % 75 % 

LS50 - 10 80 kg/m
3
� 50 % 50 % 

L75 - 10 80 kg/m
3
� 75 % 25 % 

L100 - 10 80 kg/m
3 

100 % - 

Table 2.4: Densities and cube compressive strengths measured in each mixture.

white SFRC white SFRC  (mean of two)

REF 2371

S100-05 2376 2413 40.57 39.01

S75-05 2411 2439 41.79 40.88

LS50-05 2390 2430 44.80 43.36

L75-05 2410 2428 48.03 45.41

L100-05 2407 2443 43.70 42.74

S100-10 2353 2488 40.33 44.91

S75-10 2342 2458 38.44 39.54

LS50-10 2362 2448 43.77 40.87

L75-10 2391 2455 45.27 48.56

L100-10 2418 2519 38.54 49.39

Mix Label
Density [kg/m

3
]

   42.59  (mean of three)

Rc at 28 days [MPa] 

in each considered mixture at hardened state.

In Fig. 2.9, the stress-strain curves obtained with white specimens and SFRCs having

ρ f = 0.5% and ρ f = 1.0% of fiber volume contents are plotted. The vertical axis repre-

sents the average uniaxial stress measured as the applied compressive force subdivided

to 150×150 mm2, being this latter the cross-sectional area of each cube. The hori-

zontal axis is represented by the corresponding strain given as the prescribed vertical

displacement subdivided to the specimen height (150 mm2).

The experimental results in Fig. 2.8 show very similar compressive strengths in both

white and fiber-reinforced specimens. As largely accepted in literature [Nataraja et al.,

1999, Fantilli et al., 2011], no more strength differences can be appreciated in terms of

mean values of both white and steel fiber specimens (42.53 and 43.47 MPa, respectively),

when these kinds of fiber volume contents are considered. The better performances

of SFRCs compared to white samples can be appreciable only in terms of post-peak

ductility when compressive failure processes are considered, as clearly observed in Fig.

2.9.
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Figure 2.6: Underwater curing of specimens during 28 days at constant temperature of
approximately 22oC .

Figure 2.7: SFRC samples tested in compression.

A very high stability of the results in compression was obtained as demonstrated by the

relative standard deviations

sn,whi te =

√
n∑

i=1
(Rc,i ,whi te−Rc,m,whi te )2

n

sn,SF RC =

√
n∑

i=1
(Rc,i ,SF RC−Rc,m,SF RC )2

n

(2.1)

measuring sn,whi te = 2.82% and sn,SF RC = 3.41% for white and SFRCs, respectively. In

Eq. 2.1 Rc,i ,whi te and Rc,i ,SF RC represent the compressive strengths in white and SFRC

specimens, above given in Table 2.4. Finally, Rc,m,whi te and Rc,m,SF RC deal with its

mean values.

2.3.2 Four-point bending tests

Four-point bending tests were performed with the aim of characterizing the tensile

post-cracking behavior of the considered SFRC mixture type. The UNI-11039-1 [2003]
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Figure 2.8: Cube compressive strengths of the SFRC probes [EN-12390-3, 2009].

and UNI-11039-2 [2003] standard guidelines were taken into account. Ten SFRC types,

as well as plain reference concrete, were tested and compared. Fig. 2.10 shows the

curves of the vertical load, P , versus the corresponding C T ODm curves, obtained

in experimental tests. C T ODm represents the mean of the two opposite Crack Tip

Opening Displacements (C T ODs) registered by the transductor devices (Fig. 2.5b).

The experimental results demonstrate that fibers lead to a significant enhancement of

the post-cracking toughness of the SFRC in both ρ f = 0.5% and ρ f = 1.0%. The scatter

observed in force-C T ODm curves was usually due to the non-regular distributions

of fibers inside the specimens. A lower sensitivity emerged for compressive strength

which was actually less influenced by fibers.

The first-crack strength values, fl f , defining the post-cracking response of the SFRC

composite, were defined by means of the following expression [UNI-11039-2, 2003]

fl f =
Pl f · l

b(h −a0)2 (2.2)

where Pl f represents the first crack strength [N ]; b, h and l are the width [mm], height

[mm] and length [mm] of the beam, respectively; a0 [mm] is the notch depth. Fig.

2.11 depicts the mean values of first crack strength and the two equivalent crack re-

sistances, defined in standard C T ODm ranges, i.e. [C T ODm0;C T ODm0 +0.6mm] and

[C T ODm0 +0.6;C T ODm0 +3.0mm].

These quantities, known as feq (0−0.6) and feq (0.6−3.0), were defined as follows

feq (0−0.6) = l
b(h−a0)2

U1
0.6

feq (0.6−3.0) = l
b(h−a0)2

U2
2.4

(2.3)

where U1 and U2 represent work capacity measures derived by means of the following
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Figure 2.9: Compressive stress - strain curves of white concretes and SFRCs having
ρ f = 0.5% and ρ f = 1.0% of fiber volume contents.

relations

U1 =
C T ODm0+0.6∫

C T ODm0

P [C T ODm]dC T ODm

U2 =
C T ODm0+3.0∫

C T ODm0+0.6
P [C T ODm]dC T ODm

(2.4)

The latter represent the area under the P−C T ODm curves between the range [C T ODm0 ;

C T ODm0 +0.6mm] and [C T ODm0 +0.6 ; C T ODm0 +3.0mm] for U1 and U2, respectively.

Fig. 2.12 shows the energy absorption values of each sample, calculated by means

of the Eq. (2.4) while Fig. 2.11 reports the values of strength parameters defined
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Figure 2.10: Vertical force - C T ODm curves: black lines refer to specimens with 1.0%
of fiber volume content while grey lines indicate the 0.5% of fiber fraction.

by Eqs. (2.2) and (2.3) and measured for the various tested specimens. Keeping in

mind the mechanical meaning of those parameters, Fig. 2.11 shows that specimens

reinforced with 1.0% of steel fibers exhibit a significant hardening behavior in the

flexural post-cracking regime, whereas a softening behavior was generally observed

for specimens with 0.5% of fibers. It was demonstrated that a higher presence of short

fibers increase the peak and post-peak strengths for small crack openings in cases

with 1.0% of fiber contents. On the other hand, SFRC specimens with only presence

of long fibers (L100-10) deals with a composite characterized by an immediately post-

peak softening behavior in the first crack range [C T ODm0;C T ODm0 +0.6mm]: i.e.,

feq (0−0.6) < fl f ; then, a flexural re-hardening response takes place in the second crack

range [C T ODm0 +0.6;C T ODm0 +3.0mm]: feq (0.6−3.0) > feq (0−0.6). Finally, the results

clarify that the composite with the best performance was represented by the S75-10

mixture.
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L100-10 L75-10 LS50-10 S75-10 S100-10 L100-05 L75-05 LS50-05 S75-05 S100-05

flf 4.41 3.60 4.34 4.91 4.57 4.41 3.25 3.30 3.40 3.84

feq(0-0.6) 3.74 4.04 4.61 5.39 5.06 3.58 2.60 3.03 3.05 3.27

feq(0.6-3.0) 4.03 4.42 5.08 6.31 5.67 3.02 2.00 3.12 2.03 2.78

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00
C

ra
c
k

 S
tr

e
n

g
th

s 
[M

P
a

]

Figure 2.11: Comparisons between the first crack strength, fl f , with the equivalent
crack resistances, feq(0−0.6) and feq(0.6−3.0) [UNI-11039-2, 2003]. The vertical segments
quantify the min-max range observed for each concrete mix.

L100-10 L75-10 LS50-10 S75-10 S100-10 L100-05 L75-05 LS50-05 S75-05 S100-05

U1 8.24 8.92 10.17 11.88 11.15 7.90 5.74 6.69 6.73 7.21

U2 35.51 38.97 44.82 55.61 49.98 26.60 17.65 27.55 17.90 24.55

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

W
o
rk

 c
a
p
a
ci

ty
[k

N
 m

m
]

Figure 2.12: Energy absorption measures U1 and U2 according to UNI-11039-2 [2003].
The vertical segments quantify the min-max range observed for each concrete mix.

Experimental results on SFRC with low fiber contents (0.5%) were characterized by

high sensitivity to the number of fibers crossing the cracked section. It follows that a

lower stability of the experimental results can be recognized. Furthermore, as for the

1.0% types, the presence of short fibers generates some enhancements of the post-peak

strength for small cracks (as shown in Fig. 2.11 for the cases of LS50-05, S75-05 and

S100-05) but these residual strengths rapidly decrease since fibers were debonded from

the cementitious matrix.

Further ductility indices can be considered as objective measurements of the fiber

bridging effect. Based on the UNI-11039-2 [2003] code, the following ductility measures

were calculated

D0 = feq (0−0.6)/ fl f (2.5)

and

D1 = feq (0.6−3.0)/ fl f (2.6)

Fig. 2.13 depicts the values of ductility indices defined by Eqs. (2.5) and (2.6) and

measured for the various tested beams.
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L100-10 L75-10 LS50-10 S75-10 S100-10 L100-05 L75-05 LS50-05 S75-05 S100-05

D0 0.85 1.13 1.06 1.09 1.12 0.81 0.80 0.92 0.91 0.85

D1 1.06 1.09 1.09 1.17 1.12 0.84 0.77 1.02 0.67 0.84
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Figure 2.13: Indices of the ductility according to UNI-11039-2 [2003]. The vertical
segments quantify the min-max range observed for each concrete mix.

Class F2.0 F2.5 F3.0 F3.7 F4.5 F5.5 F6.5 F7.7 F9.0

First Crack Resistance

(Minimum Value)
6.5 7.7 92.0 2.5 3 3.7 4.5 5.5

Ductility Indices

(Minimum Value) DS0 DS1 DS2 DP DH0 DH1 DH2

D0 < 0.5 � 0.5 � 0.7 � 0.9 � 1.1 � 1.3 � 1.55

D1 � 0.3 � 0.5 � 0.7 � 0.9 � 1.1 � 1.3 � 1.55

Type of response perfectly plasticcrack-softening crack-hardening

Ductility Class

Figure 2.14: Classifications based on the first crack resistances and the ductility indices
by UNI-11039-1 [2003] code.

According to the classification of UNI-11039-1 [2003] given in Fig. 2.14, when the

specific ductility index (referred to the considered C T ODm range) is greater than the

unit, the material is considered as a crack-hardening medium under flexure; when that

indices are approximatively equal to 1 the SFRC responds in a plastic post-cracking

behavior. If D0 or D1 ≤ 1 the post-cracking response is mainly softening. In practi-

cal designs, minimum mechanical performances are required to SFRC composites.

Particularly, only if feq (0−0.6) ≥ 0.5 · fl f or D0 ≥ 0.5 the post-cracking resistance can be

considered. When the post-cracking behavior does not comply with the above limits, it

should be neglected in design calculations.

2.4 Closure chapter and concluding remarks

The four-point bending behavior of notched FRC beams was investigated in this section.

The present experimental campaign focused on investigating the possible influence of

combining two different types of fibers on the resulting properties of FRC. Thus, two

different amounts of hooked-end steel fibers were employed in the concrete mixes of

tested specimens and five combinations of long/short fibers were considered for each

of them.

The following observations emerged by analysing the experimental results:
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• the first-crack strength and the whole post-cracking behavior were mainly in-

fluenced by the amount of fibers: crack-softening response was observed for all

specimens with ρ f = 0.5%, whereas a rather hardening behavior characterized

the post-cracking response of specimens with ρ f = 1.0%;

• slight influence of fiber combination can be observed in terms of first-crack

strength: this parameter is almost irrelevant in the case of low amount of fibers,

while results in a slightly more regular trend in the case of ρ f = 1.0% fibers;

• the toughness indices determined for all specimens point out that no clear influ-

ence can be recognized to fiber combination in affecting the overall response of

FRC in the post-cracking regime.

As a matter of fact, the very low influence of fiber combination on the observed FRC

behavior was the key conclusion of the experimental activity. However, it is worth

underlining that this was not a general conclusion, as in the case under consideration,

the two “different” fibers were characterized by the same material, similar geometric

details (i.e., hooked ends) and rather close values of aspect ratios. Thus, the possible

synergic effect of combining different fibers should be investigated by considering two

(or more) types of really “more different” fibers (i.e., in terms of materials, geometric

and detailing).
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3 Zero-thickness interface model for
failure behavior of fiber-reinforced
cementitious composites
This chapter deals with the formulation of a zero-thickness interface model conceived

within the general framework of the discrete-crack approach and aimed at simulating

the mechanical response of Fiber-Reinforced Cementitious Composites (FRCCs). Fol-

lowing a cohesive-frictional interface proposal, already available in scientific literature

for plain concrete, the formulation of an interface constitutive model was further de-

veloped and extended to capture the key mechanical phenomena controlling the FRCC

behavior. An original approach was introduced for reproducing the complex influence

of fibers on cracking phenomena of concrete/mortar matrix. Particularly, the proposal

takes into account both the bond-slip strength and dowel mechanisms generated by

fibers crossing the concrete cracks.

This novel interface model for FRCC was mainly based on flow theory of plasticity and

fracture energy concepts to control the energy release during cracking processes under

both fracture mode I and/or II. The constitutive proposal represents an extension of the

previous interface formulation for plain concrete approached by Carol et al. [1997] and

by Lopez et al. [2008a,b] to take into account the interaction between cement/mortar

and steel fibers. Particularly, fiber reinforcements, here considered to be embedded

into the plane of interfaces, were explicitly incorporated by means of the well-known

“Mixture Theory” by Trusdell and Toupin [1960], following the approach used in Manzoli

et al. [2008].

In this chapter, section 3.1 briefly reports the main issues of the interface model for

FRCC outlining the main assumptions utilized in the constitutive proposal. After

this, section 3.2 summarizes an overview of “Mixture Theory” concepts [Trusdell and

Toupin, 1960] and its use on the given discontinuous based proposal. The interface

model, aimed in principle at reproducing the post-peak softening behavior due to crack

propagations in plain concrete, is outlined in section 3.3. It was formulated by means

of an incremental approach, which is similar to the one usually adopted in the classical

flow theory of plasticity. A novel bond-slip model for simulating the axial effect of fibers

on concrete cracks is presented in section 3.4. Then, the composite action between
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concrete and fiber reinforcements is also completed by considering the dowel fiber

effect as given in 3.5. Some concluding remarks of this chapter are finally reported in

section 3.6.

3.1 Interface constitutive model for FRCC

The present constitutive model for FRCC interfaces, based on an application of the

“Mixture Theory”, includes three internal “components” listed below:

1. a fracture energy-based cracking formulation for plain mortar/concrete interfaces

which relates normal and tangential stress components with the corresponding

relative displacements in the plane of the interface. Its maximum strength crite-

rion was defined according to the three-parameter hyperbolic failure surface by

Carol et al. [1997]. Main features of this model are summarized in section 3.3.

2. afiber bond-slip formulation to describe the uniaxial inelastic behavior of steel

fibers crossing the interfaces by means of an elastoplastic model as indicated in

section 3.4.

3. a formulation for fiber dowel action based on elastic foundation concepts to ob-

tain the dowel force-displacement relationship. Further details of the constitutive

model are proposed in section 3.5.

For the sake of simplicity, the present model was formulated in 2D, as Lopez et al.

[2008a,b] did in a similar proposal for simulating the meso-scale fracture behavior

on plain concrete. Particularly, they demonstrated that the results obtained in 2D

successfully reproduced the experimental behavior under several basic stress states.

3.2 Outline of the Mixture Theory

3.2.1 Composite material model

According to the fundamental assumptions of the Mixture Theory formulated in Trus-

dell and Toupin [1960], each infinitesimal volume of the mixture is ideally and simul-

taneously occupied by all mixture constituents (i.e. “phases”), that are subjected to

the same displacement fields. Consequently, the composite stress is obtained from

the addition of the mixture stresses weighted by the volume fraction of each mixing

constituent.

The composite schematization of a considered steel FRCC panel, as in Fig. 3.1, takes

into account three main phases: (i) coarse aggregates, (ii) cementitious matrix or mortar

and (iii) steel fibers. The mechanical properties of the considered composite material
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3.2. Outline of the Mixture Theory

ρa ρm ρf

FRCC

ρa +ρm +ρf =1

Figure 3.1: Main assumptions of fibrous concretes in the framework of the well-known
“Mixture Theory” [Trusdell and Toupin, 1960].

can be defined according to the “Mixture Theory” above mentioned. For instance, a

generic mechanical parameter of the composite can be derived as

pc = ρa pa +ρm pm +ρ f p f (3.1)

being pc the considered mechanical parameter (i.e., the elastic modulus or the Poisson’s

ratio) while ρ# refers to the volume fraction of each # component (Fig. 3.2): i.e., # =c

for the considered composite, # =a for coarse aggregates, # =m for matrix and # = f for

fibers.

In a similar way, let us consider a generic relative displacement vector at the interface

u (Fig. 3.3), the axial displacement of the single fiber is given by uN = u ·nN (being

nN the fiber direction), while in the transversal direction uT = u ·nT . Thereby, nT is a
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FRCC

p
�

Fibers

ρf pf

Coarse aggregates

ρapa

Matrix

ρmpm

Figure 3.2: Mixture components of the FRCC continuum material.

unitary vector orthogonal to nN . Consequently, the axial and tangential fiber strains

can be derived as εN = uN /l f and γT = uT /l f , respectively, being l f the fiber length

(each fiber was ideally assumed to cross the interface fracture surface at its mid-length,

i.e. at l f /2).

Figure 3.3: Schematic configuration of an interface element crossed by one fiber.

The interface constitutive model was formulated in incremental form, as generally

assumed for the flow theory of plasticity. According to the hypotheses of the composite

model, the rate of the stress vector at the interface ṫ = [σ̇, τ̇]t (being σ and τ the normal

and tangential interfacial composite stresses, respectively), was calculated by means of

the following ρ#-weighted sum

ṫ = w[ρi ]ṫ i +
n f∑

f =0
w[ρ f ]

(
σ̇ f [ε̇N ]nN + τ̇ f

[
γ̇T

]
nT

)
. (3.2)
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3.2. Outline of the Mixture Theory

The indices i and f refer to interface and fiber, respectively; σ f and τ f mean the

bond-slip force and dowel effect of the single considered fiber; n f is the number of

fibers crossing the interface. The weighting function of the plain interfaces w[ρi ] was

generally assumed as unitary, while w [ρ f ] takes into account the effectiveness decay of

fiber contributions to the total stress as the fiber content increases. It can be formulated

as a function of the total fiber content ρ f ,

w[ρ f ] = [
1−α f ρ f

]
ρ f ,1 (3.3)

being ρ f ,1 the fiber content of a single reinforcement while α f is a material parameter

to be calibrated.

Figure 3.4: Fiber effects on the plane of the zero-thickness interface

Fiber bridging effects, formulated herein in terms of bond-slip and dowel mechanisms,

are schematically represented in the interface plane as in Fig. 3.4.

The number of fibers per interface, radially distributed in the crack plane, was explicitly

considered in the present work. No random distribution of fibers was considered in this

formulation. This could be handled within the framework of well established statistical

procedures. Particularly, the present interface model deals with the schemes given in

Fig. 3.5, in which a regular iso-angular spacing between fibers crossing the interface

was considered.

The evaluation of the total number of fibers which cross the interface was essentially
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Figure 3.5: Considered fibers crossing the interface: as example the cases of 1, 2, 3, 4, 5
and 6 reinforcements are presented.

founded on the relationship proposed by Krenchel [1975]

n f =α~N
ρ f

A f
Ai (3.4)

where ρ f is the fiber content, A f and Ai are the cross-sectional area of a single fiber

and the area of the considered interface, respectively.

The calculation of the orientation factor α~N was investigated for many researchers

[Krenchel, 1975, Soroushian and Lee, 1990, Li et al., 1991, Stroeven, 1999, Kooiman,

2000, Dupont and Vandewalle, 2005]. The most recent proposal outlined by Dupont

and Vandewalle [2005] was taken as reference in the following of this work.

3.2.2 Constitutive models of each single phase

The relationship between stresses and relative displacements, developed throughout

the generic fracture interface, can be formulated in the following incremental form, as

usual in classical plasticity-based model

ṫ = E ep · u̇ (3.5)

being ṫ the rate vector of the composite joint stresses and u̇ the interface displacement

rate vector, respectively.
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3.2. Outline of the Mixture Theory

As previously proposed, the composite interface was based on the consideration that

each infinitesimal surface is ideally and simultaneously occupied by all components.

Each component is subjected to the same displacement field while the corresponding

composite stress is given by the weighted sum of the component s tresses. For the same

assumption the constitutive tangent operator, E ep , is given by the following expression

E ep = w[ρi ]C ep +
n f∑

f =0
w[ρ f ]

E ep
f

l f
nN ⊗nN +

Gep
f

l f
nT ⊗nT

 (3.6)

based on the weighting functions w[ρ#] (# = i , f ) of Eq. (3.3), where ρ# represents the

volume fraction of the # composite phase, nN ⊗nN and nT ⊗nT identify the second

order dyadic tensor constructed on the fiber direction and its orthogonal of a generic

fiber with respect to the global Cartesian reference system.

The tangent operators
[

C ep ,E ep
f ,Gep

f

]
of Equation [3.6] were defined as follows:

• for the fracture-based plain interface model:

C ep = ∂t i /∂u, (3.7)

formulated in terms of normal (σN ) and shear (σT ) stresses (t i = [σN ,σT ]t ) of

plain concrete joints corresponding to the relative displacements u (further

details are explained in section 3.3);

• for the bond-slip fiber-to-concrete model:

E ep
f = dσ f /dεN , (3.8)

being σ f and εN the axial stress and strain of fibers at cracks (ideally assuming

that each fiber crosses the interface fracture surface at its mid-length, i.e. l f /2);

a closed-form analytical constitutive model for the debonding fiber process (in

terms of σ f −εN law) was considered (see section 3.4 for further details);

• for the dowel action model:

Gep
f = dτ f /dγT , (3.9)

in which the elastic branch of the shear stress-strain law (τ f −γT ) was derived by

modeling the fiber embedded into the cement matrix as a Winkler foundation

beam (as presented in section 3.5).
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3.3 Fracture energy-based model for plain mortar/concrete in-

terface

This section summarizes the interface model originally proposed in Gens et al. [1988]

for application in soil-mechanics and extended to plain concrete by Carol et al. [1997].

The constitutive equation, in the framework of the rate-independent plasticity theory,

can be presented in incremental form as

u̇ = u̇el + u̇cr (3.10)

u̇el = C−1 · ṫ i (3.11)

ṫ i = C · (u̇ − u̇cr ) (3.12)

where u̇ = [u̇, v̇]t is the rate of the relative joint displacement vector, decomposed into

elastic and plastic components, u̇el and u̇cr , respectively. C defines a fully uncoupled

normal/tangential elastic stiffness matrix

C =
(

kN 0

0 kT

)
(3.13)

while ṫi = [σ̇N , σ̇T ]t is the incremental stress vector defined in the interface coordinates,

being σN and σT the normal and shear components, respectively.

The vector of the plastic displacement rate, according to a non-associated flow rule,

was defined as

u̇cr = λ̇m (3.14)

where λ̇ is the non-negative plastic multiplier derived by means of the classical Kuhn-

Tucker loading/unloading and consistency conditions which take the following form

λ̇≥ 0, f ≤ 0, λ̇ · f = 0 Kuhn−Tucker

ḟ = 0 Consistency
(3.15)

where f = f [σN ,σT ] defines the yield condition of the model on the bases of the

following three-parameter formulation (outlining the hyperbola represented in Fig.

3.6)

f =σ2
T − (c −σN tanφ)2 + (c −χ tanφ)2. (3.16)

The tensile strengthχ (vertex of the hyperbola), the cohesion c and the frictional angleφ

are material parameters needed for identifying the interface model. Eq. (3.16) outlines

two principal failure modes:
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Figure 3.6: Failure hyperbola by Carol et al. [1997], Mohr-Coulomb surface, plastic
potential and the modified flow rule according to Eq. (3.19) of the interface model.
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Figure 3.7: Evolution law of the interface fracture parameters.

• Mode I type of fracture: maximum strength surface is reached along its horizontal

axis;

• asymptotic Mode II type of fracture: maximum strength surface is reached on its

asymptotic region in which the hyperbola approaches a Mohr-Coulomb criterion

(see Fig. 3.6).

Eq. (3.14) describes a general non-associated flow rule which controls the direction

m of interface fracture displacements. In the present formulation the non-associated

plastic direction is described by means of the transformation matrix operator A

m = A ·n (3.17)
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being

n = ∂ f

∂t i
=

[
∂ f

∂σN
,
∂ f

∂σT

]t

= [
2tanφ(c −σN tanφ),2σT

]t (3.18)

and

A =



(
tanβ
tanφ 0

0 1

)
if σN ≥ 0( [

1− |σN |
σdi l

]
tanβ
tanφ 0

0 1

)
if −σdi l ≤σN < 0(

0 0

0 1

)
if σN <−σdi l

(3.19)

where tanβ is the dilation angle of the plastic potential, represented in Fig. 3.6: 0 ≤
tanβ≤ tanφ. Thereby, the parameter σdi l represents the normal stress at which the

dilatancy vanishes, see in Carol et al. [1997] and Lopez [1999].

3.3.1 Single internal state variable

The fracture work spent wcr during the opening-sliding fracture process governs the

evolutions of the material parameters χ, c and tanφ in softening regime of the interface

constitutive law. The variable wcr defines the necessary amount of released energy to

open a single crack in tensile and/or shear fracture mode due to normal σN and/or

tangential σT joint stresses, respectively.

Hence the incremental fracture work spent ẇcr , in a generic fracture process, was

defined as follows [Carol et al., 1997]

ẇcr =σN · u̇cr +σT · v̇cr , i f σN Ê 0 (3.20)

ẇcr =
[
σT −|σN | t an(φ)

] · v̇cr , i f σN < 0 (3.21)

while the total dissipated work was obtained by integrating the fracture work incre-

ments during fracture process time frame.

3.3.2 Evolution laws of the fracture surface

In this formulation, the decay function proposed in Caballero et al. [2008] was consid-

ered for all internal parameters of the yield condition, see Eq. (3.16), as

pi =
[
1− (

1− rp
)

S[ξpi ]
]

p0i (3.22)
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Figure 3.8: Cosine-based vs. linear law related to the ratio between the work spent wcr

and the available energies G I
f or G I I a

f .

with pi alternatively equals to χ, c or t anφ. Last equation defines the typical internal

parameter degradation law from its maximum or initial value, pi = p0i , to the residual

one, pi = rp p0i , in terms of the scaling function S[ξpi ], where

S[ξpi ] = e−αpi ξpi

1+ (e−αpi −1)ξpi

. (3.23)

Thereby, parameter αpi controls the decay form of the internal parameter as shown in

Fig. 3.7, while the non-dimensional variable ξpi introduces the influence of the ratio

between the current fracture work spent and the available fracture energy, in the decay

function Eq. (3.22) as

ξχ =
 1

2

[
1− cos

(
πwcr

G I
f

)]
if wcr ≤G I

f

1 otherwise
(3.24)

ξc = ξtanφ =
 1

2

[
1− cos

(
πwcr

G I I a
f

)]
if wcr ≤G I I a

f

1 otherwise
(3.25)

according to the C 1 continuity function proposed in Caballero et al. [2008]. Figs. 3.8 and

3.9 show typical curves obtained with Eqs. (3.24) or (3.25) and the respective derivates

compared to the original linear proposal in Carol et al. [1997].
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Figure 3.9: Comparison of the derivates between the cosine-based law against the
linear rule.

3.3.3 An overview of the interface model for plain concrete/mortar

In the above subsections a rate-independent fracture-based plasticity model has been

presented and the main aspects of the interface formulation has completely been

detailed. This final subsection is aimed at compactly reporting all the interface ingre-

dients above given. Particularly, in Table 3.1 the adopted yield criterion, the flow rule,

the cracking work evolution laws and the well-known Kuhn-Tucker and consistency

conditions are compactly reported.

Table 3.1: Overview of the interface model for Plain Concrete/Mortar

Fracture - based energy interface model

Constitutive equation
ṫ i =C · (u̇ − u̇cr )

u̇ = u̇el + u̇cr

Yield condition f
(
t i ,κ

)=σ2
T − (c −σN tanφ)2 + (c −χ tanφ)2

Flow rule
u̇cr = λ̇m
m = A ·n

Cracking work evolution
κ̇= ẇcr

ẇcr =σN · u̇cr +σT · v̇cr if σN ≥ 0
ẇcr =

[
σT −|σN | t an(φ)

] · v̇cr if σN < 0

Evolution law pi =
[
1− (

1− rp
)

S[ξpi ]
]

p0i

Kuhn - Tucker / Consistency λ̇≥ 0, f
(
t i ,κ

)≤ 0, λ̇ f
(
t i ,κ

)= 0, ḟ
(
t i ,κ

)= 0
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3.4. One-dimensional bond-slip model for fibers

3.4 One-dimensional bond-slip model for fibers

This section deals with the proposed one-dimensional plasticity model for the steel

fiber stress-strain response to account in the composite model given in Eq. (3.2).

Particularly, the total strain rate ε̇N can be decomposed into elastic (ε̇el
N ) and plastic

(ε̇pl
N ) components as

ε̇N = ε̇el
N + ε̇pl

N (3.26)

and the total stress rate results

σ̇ f = E f (ε̇N − ε̇pl
N ) (3.27)

where E f represents the uniaxial elastic modulus which encompasses both the uniaxial

response of the steel fiber and the bond-slip effect of the short steel reinforcement in

mortar/concrete interfaces. In case of isotropic hardening, the yield condition takes

the following form

f f = |σ f |− (σy, f +Q f ) ≤ 0 (3.28)

withσy, f ≥ 0 the initial yield stress and Q f the internal softening variable in post-elastic

regime. Its evolution law was defined as

Q̇ f = λ̇ f H f (3.29)

while that of the plastic strain rate results

ε̇
pl
N = λ̇ f ∂ f f /∂σ f = λ̇ f si g n[σ f ] (3.30)

being λ̇ f the plastic multiplier and H f is the softening module.

Then, Kuhn-Tucker loading/unloading conditions were given by

λ̇ f ≥ 0, f f (σ f ,Q f ) ≤ 0, λ̇ f f f (σ f ,Q f ) = 0 (3.31)

imposing ḟ f (σ f ,Q f ) = 0, the persistent (consistency) under loading condition.

The constitutive stress-strain relationship can be written as

σ̇ f = E ep
f ε̇N (3.32)
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Figure 3.10: (a) Uniaxial model of fiber bond-slip and (b) serial model for the axi-
al/debonding behavior.

where the elasto-plastic tangent module E ep
f takes the two distinct following values

[Simo and Hughes, 1998]

{
E ep

f = E f → elastic/unloading response

E ep
f = E f ·H f

E f +H f
→ elasto-plastic regime

. (3.33)

Fiber strain εN can be simply decomposed into two parts, one due to the intrinsic

uniaxial deformation εN ,s and the other associated to the interface debonding εN ,d ,

εN = εN ,s +εN ,d . (3.34)

Assuming a serial system with two 1D elastoplastic components, corresponding to the

fiber axial behavior and the fiber-matrix debonding (see Fig. 3.10b), the resulting total

elastic flexibility 1/E f is given as

1

E f
= 1

Es
+ 1

Ed
(3.35)

where Es and Ed are the steel fiber elastic modulus and the equivalent elastic one of

matrix-fiber debonding, respectively. Two limiting situations can be recognized:

• Ed → 0: the serial structure response and, consequently, the uniaxial fiber

strength vanish.

• Ed →∞: perfect bonding case between fiber and matrix.

48



3.4. One-dimensional bond-slip model for fibers

The bond-slip axial constitutive model can be completed by defining the following

material parameters

σy, f = mi n[σy,s ,σy,d ] (3.36)

H f =
{

Hs if σy,s <σy,d

Hd otherwise
(3.37)

whereby σy,s and σy,d are the yield stress and the equivalent interface elastic limit,

respectively.

The parameters Ed , σy,d and Hd required for the bond-slip model characterization,

can be calibrated by analyzing a simple pull-out scheme as proposed in the following

subsections and derived in detail in Chapter 4.

3.4.1 Closed-form pull-out analysis of a single fiber

Fig. 3.11 shows an isolated fiber loaded by a pulling force, Pi . The fiber is embedded in

a cementitious matrix for a lemb length measure. The equilibrium scheme given in the

figure is used to simulate the complete slipping behavior.

Figure 3.11: Pull-out of a single fiber reinforcement

The following basic equations were used for analyzing the fiber-to-concrete debonding

process:

• Equilibrium:
dσ f [x]

d x =−4τa [x]
d f

, being σ f the axial stress of the fiber, τa the shear

bond stress and d f the diameter of the fiber.
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• Fiber constitutive law in axial direction: σ f [x] = Es
d s[x]

d x , with Es the elastic steel

modulus and s[x] the slip between fiber and surrounding concrete mortar based

on the assumption of Fig. 3.11.

• Bond constitutive law: τa[x] =


−kE s[x] s[x] ≤ se

−τy,a +kS (s[x]− se ) se < s[x] ≤ su

0 s[x] > su

,

where, assuming a bilinear τa − s law, kE and −kS represents the slope of the

elastic and softening branches of the bond-slip relationship, respectively, τy,a

whereas is the maximum shear stress. Thus, se = τy,a

kE
and su represent the elastic

and the ultimate slips, respectively.

As schematically reported in Table 3.2 and based on the approaches proposed for

studying FRP laminates under pull-out by Yuan et al. [2004] for long anchorages and

Caggiano et al. [2012c] for general anchoring lengths, different states of the bond

response can be defined. The fiber-to-concrete interface is in elastic bond state (E) if

s[x] ≤ se , in softening state (S) when se < s[x] ≤ su , or the bond is crushed if s[x] > su .

A combination of these three stress states can occur throughout the bonding length

during the pull-out process of the single fiber (see Table 3.2).

Fully elastic behavior of fibers was assumed. This is strictly true in the case of synthetic

fibers, while can be accepted for steel ones when the length lemb results in the condition

of Pi ,max ≤σy,s A f , where σy,s is the fiber yielding stress and A f the area of transverse

section.

Table 3.2: Bond response of the fiber-concrete joint depending on the slip s[x] devel-
oped throughout the embedment length

Slips Type of joint adherence

s[x] ≤ se∀x ∈ [−lemb ,0] ElasticResponse (E)

s[x] ≤ se∀x ∈ [−lemb ,−le ]
se < s[x] ≤ su∀x ∈ [−le ,0]

Elastic−SofteningResponse (ES)

se < s[x] ≤ su∀x ∈ [−lemb ,0] SofteningResponse (S)

s[x] ≤ se∀x ∈ [−lemb ,−le ]
se < s[x] ≤ su∀x ∈ [−le ,−lu]

s[x] > su∀x ∈ [−lu ,0]
Elastic−Softening−Debonding (ESD)

se < s[x] ≤ su∀x ∈ [−lemb ,−lu]
s[x] > su∀x ∈ [−lu ,0]

Softening−DebondingResponse (SD)

s[x] > su∀x ∈ [−lemb ,0] DebondingFailure (D)

being −le
(
0 ≤ le ≤ lemb

)
and −lu

(
0 ≤ lu ≤ lemb

)
the abscissas of the points in which the local slip s[x] is

equal to the elastic limit (se ) and the ultimate value (su ), respectively.
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3.4. One-dimensional bond-slip model for fibers

For the sake of simplicity, the description of the complete analytical pull-out model is

given in Chapter 4 completely dedicated to the pull-out modeling of fiber-to-concrete

joints.

3.4.2 Verification of the pull-out model

Some numerical examples are reported in this section to show the main features of the

proposed bond-slip analytical model. The verification examples include pull-out tests

of both straight and hooked-end steel fibers. Test data by Lim et al. [1987] regarding

pull-out probes were considered which relevant properties of fibers are listed as follows:

• Straight fibers: d f = 0.565mm (diameter), σy,s = 345 N /mm2 (strength), Es =
210GPa (elastic modulus).

• Hooked fibers: d f = 0.500mm (diameter), σy,s = 1130 N /mm2 (strength), Es =
200GPa (elastic modulus).
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Figure 3.12: Pull-out tests (discontinuous lines) by Lim et al. [1987] on straight and
hooked-end steel fibers vs. numerical results (continuous lines)

Table 3.3: Model parameters for the pull-out tests by Lim et al. [1987]

MaterialParameters

StraightFibers

HookedFibers

τy,a[MPa] kE [MPa/mm] kS [MPa/mm] su[mm]

3.0 2.0 0.1 4.725
6.0 5.0 0.2 3.380

Figure 3.12 shows the Pi − si curves (pull-out action vs. applied slip) for straight and

hooked-end steel fibers with different embedment lengths based on the model param-

eters defined in Table 3.3.

The proposed model leads to good predictions of the behavior of both fiber types,

capturing the increment of strength as the embedment measure increases. It is worth
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nothing that the presence of hooked-ends in fibers determines an increase in shear

strength, τy,a , compared to straight fibers and a decrement of the ductility of the contact.

As a matter of fact, the elastic and softening slopes (kE and kS , respectively) increase

considering hooked-end fibers, while a decrease in the ultimate slip, su , passing from

straight to hooked fibers can be observed.

3.5 Dowel effect of steel fibers crossing cracks in cementitious

matrix

A 1D elastoplastic model was considered to take into account the dowel effect of

fibers crossing one single crack. This model describes the evolution law of the shear

fiber strains γ̇T and the dowel stress τ̇ f (needed relationship in the composite model

outlined in Eq. 3.2) representing the interaction between fiber and matrix as follows

γ̇T = γ̇el
T + γ̇pl

T (3.38)

τ̇ f = G f

(
γ̇T − γ̇pl

T

)
(3.39)

being γ̇el
T and γ̇pl

T the elastic and plastic shear strain components, respectively, and G f

the equivalent shear modulus.

Within the framework of the flow plasticity theory, the complete model is described by

means of the following set of equations:

• Yield function: g f = |τ f |− (τy, f +Qdow ) ≤ 0, when τ f is the dowel shear stress,

τy, f the dowel strength and Qdow the stress-like internal parameter.

• Softening law: Q̇dow = λ̇ f Hdow , where λ̇ f and Hdow are the plastic multiplier

and the hardening/softening modulus, respectively.

• Flow rule: γ̇pl
T = λ̇ f ∂g f /∂τ f = λ̇ f si g n[τ f ], where γ̇pl

T is the rate of the plastic

dowel strain.

The Kuhn-Tucker loading/unloading conditions (with the consistency relation) com-

plete the formulation of the model. The constitutive law between the dowel shear stress,

τ f , and the corresponding equivalent shear strain, γT , can be written in incremental

form as follows

τ̇ f =Gep
f γ̇T (3.40)

being Gep
f the tangent modulus expressed in terms of the initial dowel stiffness G f and
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Figure 3.13: Dowel effect based on the well-known Winkler beam theory.

the hardening/softening modulus Hdow , depending on to consider the cases of loading

or unloading/elastic

{
Gep

f =G f → unloading/elastic

Gep
f = G f ·Hdow

G f +Hdow
→ loading

(3.41)

in which usually Hdow = 0.

3.5.1 Dowel stiffness

The analytical model, used to predict the dowel behavior of fibers embedded in concrete

composites, was based on the analysis of a beam on elastic foundation (BEF), see Fig.

3.13. The following differential equation for the deflection equilibrium of a BEF can

written

d 4∆(x)

x4 +4λ4∆(x) = 0 with λ4 = kc

4Es Js
(3.42)

being ∆(x) the deflection of the beam, kc the elastic stiffness of the spring foundation

modelling the surrounding cementitious matrix, Es and Js are the elastic modulus of the

steel and the inertia of the fiber, respectively, and finally λ represents a characteristic

length of the Winkler beam.

The quantity λ has the dimension of 1/l eng th. Then a fundamental parameter can be

introduced that is widely used in the related literature: l f un = 2π/λ, representing the

characteristic length of BEF. It is largely accepted that when the length dimension of a

BEF exceeds l f un/2 the same beam can be treated as semi-infinite BEF. In case of SFRC,

the fibers are characterized by small diameters d f , then, this hypothesis is still valid.

Based on this, the fiber can be analyzed as a “semi-infinite” BEF, then the following

equations govern the problem

∆(x) = A1e−λx cos(λx)+ A2e−λx sin(λx)

Md (x) = 2Es Jsλ
2e−λx [A2 cos(λx)− A1 sin(λx)]

Vd (x) =−2Es Jsλ
3e−λx [(A2 − A1)sin(λx)+ (A1 + A2)cos(λx)]

(3.43)
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being Md and Vd the bending moment and the dowel action at l f /2 of the steel fiber,

while A1 and A2 are constants deriving by the boundary conditions.

The analytical solution of the semi-infinite BEF problem is based on the assumption

that the crack width is considered null and supposing that in x = 0 the moment is null

(inflection point). Then, considering an applied dowel force, Vd , at the loaded end

(x = 0), the following analytical deflection is obtained

∆(x) =−e−λx cos(λx)

2λ3Es Js
Vd . (3.44)

Finally, the Vd −∆ law in correspondence of the considered crack (x = 0) takes the

following expression

Vd =λ3Es Js∆→ Vd
A f

= l f

A f
λ3Es Js

∆
l f

⇒G f = l f

A f
λ3Es Js

(3.45)

also expressed in terms of τ f −γT

(
Vd
A f

− ∆
l f

)
law, from which the dowel stiffness, G f , can

be derived. In Equation [3.45] A f =π
d 2

f

4 is the cross sectional area of a single fiber.

The elastic stiffness of the spring foundation, kc , represents the foundation stiffness that

in the present case is defined by the stiffness of the surrounding mortar. Experimental

tests performed on RC-members [Dei Poli et al., 1992] show that typical values of kc

vary from 75 to 450 N /mm3. In other tests [Soroushian et al., 1987] can be observed

that the coefficient kc increases with the strength of the surrounding mortar matrix as

well as with the volume fraction of the reinforcement. Furthermore, the dowel stiffness

is somehow inversely proportional to the fiber diameter.

The elastic foundation stiffness of the surrounding concrete, kc , assumes the following

empirical expression [Soroushian et al., 1987]

kc = κ1

√
fc

d f
2/3

(3.46)

being fc the compression strength of the surrounding cementitious matrix and κ1 a

coefficient to be calibrated.

3.5.2 Dowel strength

Typical failures in the fiber dowel are characterised by local crushing of the surrounding

matrix and/or yielding of the steel fiber. For these reasons, the following empirical
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expression [Dulacska, 1972], considering both failure modes, is employed

Vd ,u = kdow d 2
f

√
| fc ||σy,s | (3.47)

being kdow a non-dimensional coefficient which typical value kdow = 1.27 could be

assumed as a reference for RC-structures [Dulacska, 1972].

Finally, the equivalent dowel strength τy, f can be defined for the dowel action (and

employed for the yielding criterion above mentioned)

τy, f =
Vd ,u

A f
. (3.48)

3.6 Closure chapter and conclusions

In this section, a new constitutive theory for failure analysis of Fiber-Reinforced Cemen-

titious Composites (FRCCs) was proposed. An innovative approach for reproducing

the fiber effects on the cracking phenomena of the concrete/mortar matrix was con-

sidered. The well-known discrete crack approach based on zero-thickness interface

elements was taken as reference framework. The matrix degradation under mode I

and II failure modes was modeled by means of a fracture energy-based softening law

formulated in the framework of the flow theory of plasticity. Two fundamental aspects

of the fiber-mortar interaction were considered in the model, i.e. the bond behavior

of fibers bridging the crack opening and the dowel effect derived by possible relative

transverse displacements of the two faces of the crack. The inclusion of fibers and the

above two effects were taken into account by means of the well-known Mixture Theory.

The meso-mechanical approach (and the consequent possibility of modeling the be-

havior of FRCC starting from both their components and the interactions among them)

was the key novelty of the proposed model. As a matter of principle, the huge aleatoric

nature of FRCC (mainly deriving by the randomness in fiber orientation and distribu-

tion, aggregate size and collocation, mixing and casting procedures and so on, so forth)

was the key reason why simulating the global behavior of FRCCs starting from their

constituents can lead to unreliable predictions of the global response of the composite

material as a whole. Nevertheless, the basic interactions among the various compo-

nents which actually affect the global response of FRCC can be modeled mechanically

as proposed in the present work and the natural randomness of the component proper-

ties and distribution can be handled within the framework of well established statistical

procedures whose application was beyond the scopes of the present formulation. The

soundness and capabilities of the proposed formulation will be given in the following

dedicated chapter of this thesis.

The interface model proposed in this work can be employed in mesoscopic analyses
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aimed at simulating failure processes possibly developing at the mortar-mortar and

mortar-aggregate interfaces see a.o. Lopez [1999] and Idiart [2009]. The strategy

proposed in this section for modeling failure behavior of FRCCs based on the discrete

crack approach and on interface elements can straightforwardly be extended to other

well-known numerical techniques. In this regards, finite elements with additional

degrees of freedom by Oliver et al. [2002, 2006] (with Embedded discontinuities known

as E-FEM), or with additional nodal degrees of freedom [Moes and Belytschko, 1999,

Hettich et al., 2008] (eXtended-FEM) could be considered as alternative numerical

frameworks for FRCCs modeling. Other interesting procedures that could be also

mentioned with the strategy here proposed for FRCCs are the so-called lattice models

[van Mier et al., 2002, Lilliu and van Mier, 2003], the particle-based formulations [Bazant

et al., 1990, Rabczuk and Belytschko, 2006], the Element-free Galerkin [Belytschko

et al., 1995, Zhang et al., 2008] and the hybrid-Trefftz stress-based formulation in

Kaczmarczyk and Pearce [2009].
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4 A unified formulation for simulat-
ing the bond behavior of fibers in
cementitious materials
This chapter presents a unified formulation for simulating the overall bond behavior of

fibers embedded in cementitious matrices. In principle, such a formulation is based

on assuming a model between interface bond stresses and the corresponding relative

displacements. Two alternative models are actually considered. The first one is based

on a simplified bilinear relationship and can be handled analytically; the second one

assumes a refined fracture-based plasticity model which requires for its integration

a numerical solution approach. Both models, considered in the present formulation,

address the behavior of fibers under tensile axial stresses which result in a “mode II”

debonding phenomenon. Finally, numerical results are reported for both validating the

proposed models against relevant experimental results and pointing out the differences

possibly arising by adopting the two alternative models considered.

4.1 Importance of the bond-slip modeling

A sound knowledge of fiber-matrix interaction is of key importance for simulating

the response of structural members made out of Fiber-Reinforced Cementitious Com-

posites (FRCCs). As a matter of principle, the effectiveness of fibers, embedded in

cement-based matrices, mainly depends on several factors such as fiber length, diam-

eter, fiber type (e.g., smooth, hooked-end, flattened, twisted, etc.) and materials of

both reinforcement and surrounding matrix. Moreover, the bond behavior is a complex

phenomenon actually controlled by physical and chemical interactions between fiber

and matrix.

In the last decades, several innovative researches were carried out to manipulate the

interface-structure at both physical and chemical levels. The superior performance of

hooked-ended and “non-smooth” fibers is clearly pointed out in experimental studies

by Naaman and Najm [1991], Laranjeira et al. [2010]. Further experimental evidence

about such a role is available in Cunha et al. [2010], whereas the effect of fiber length

on the pull-out mechanism of polypropylene fibers is outlined in Singh et al. [2004].
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However, the bond behavior of fibers embedded in cementitious matrix is not only

affected by the above mentioned fiber properties, but it is even deeply influenced by

the matrix quality. For instance, experimental researches on smooth fibers embedded

in concrete of Normal (N-) and High Strength Concretes (HSCs) given in Shannag et al.

[1997] point out the fact that bond behavior can be enhanced as the matrix strength

increases. Moreover, the inclusion of nano-particles in cement matrices is one of the

most recent solutions, with the twofold objective of enhancing the durability of the

fiber-to-matrix interface [Butler et al., 2009] and improving the adhesion properties

between fibers and matrix [Wang et al., 2009].

Thus, since several parameters play a significant role in affecting the fiber-matrix

interaction in FRCC, the formulation of sound mechanical models for simulating the

bond behavior of fibers is a fairly challenging issue. As a matter of principle, two main

families of such models can be recognized in the scientific literature[Stang et al., 1990,

Li and Chan, 1994]: the first one can be defined as stress-based approaches [Katz and

Li, 1995, Ghavami et al., 2010], while the second one is represented by the so-called

energy-based bond-slip models [Shah and Ouyang, 1991, Fantilli and Vallini, 2007].

Besides the particular interest in simulating the mechanical response of single fibers,

the above mentioned models should be intended as a key contribution towards the

possible modeling of the structural behavior of FRCC members based on the explicit

simulation of the fiber influence on cracking processes. As a matter of fact, the most

common mechanical models currently employed for simulating the behavior of FRCC

are based on continuous smeared-crack approaches [Seow and Swaddiwudhipong,

2005] and generally deriving by previous proposals originally formulated for plain

concrete [Folino et al., 2009, Folino and Etse, 2012]. Although such models are generally

accepted in simulating the cracking behaviors of FRCC, it should be noted that their

calibration is necessarily based on experimental results directly obtained on the FRCC

material under consideration, as the fiber-matrix bond interaction deeply affects the

post-cracking regime and the corresponding material parameters (mainly related with

the fracture energy to be considered in smeared-crack approaches).

To overcome this drawback, alternative models aimed at explicitly simulating the

actual discrete nature of FRCC are recently formulated within the framework of the

so-called discontinuous-based approaches [Oliver et al., 2008, Caggiano et al., 2012b].

The discrete-crack approach and the consequent possibility of modeling the behavior

of FRCC starting from both their components (i.e., the bond-slip mechanisms) and

the interactions among them is the main issue of the proposal reported in Chapter 3.

Although such model is more computationally demanding, they can, in principle, be

identified through accurate models and parameters which are directly and explicitly

related to the key material components. Thus, the accurate description of the fiber-

matrix bond behavior is a key element to formulate and identify such meso-mechanical

models.
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In this framework, the present chapter proposes a unified formulation for simulating

such a bond behavior based on the fundamental assumptions reported in Section

4.2. Two alternative models are actually considered. The first one is based on the

simpler elasto-plastic behavior with isotropic linear softening as outlined in Section

4.3. Conversely, the second one is founded on the fracture energy-based contact model

outlined in Section 4.4 and will be employed in a numerical solution of the fiber-matrix

interaction problem. Finally, Section 4.5 presents the results of simulations obtained

through the two models considered in the presented unified formulation of the tensile

response of fibers embedded in concrete matrices. Moreover, the theoretical prediction

of the influence of relevant parameters (such as fiber anchorage length and diameter)

is also outlined in the same section.

4.2 Bond behavior of fibers in concrete matrix: basic assump-

tions

The basic assumptions for Finite Element (FE) simulation of bond behavior of fiber em-

bedded in cementitious materials are presented in this section. Fiber reinforcement is

modeled through the use of one-dimensional two-nodes iso-parametric truss element.

The interface slip between reinforcing steel and surrounding concrete is addressed by

means of interface elements as schematically shown in Fig. 4.1.

Figure 4.1: Considered scheme of fiber under pull-out loading.

4.2.1 Behavior of steel fibers

The mechanical behavior of steel in fibers is modeled as a 1-D elastic-perfectly plastic

material. The incremental stress-strain law can be written as

σ̇ f = E ep
f ε̇ f (4.1)
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being σ̇ f the axial stress rate of the fiber, ε̇ f the incremental axial strain and the tangent

elasto-plastic modulus E ep
f takes the following two distinct values

{
E ep

f = E f el ast i c/unloadi ng

E ep
f = 0 loadi ng wi th λ̇ f > 0

(4.2)

where λ̇ f is the non-negative plastic multiplier captured by means of the Kuhn-Tucker

and consistency conditions and E f represents the uniaxial elastic module of the fiber.

Finally, the yielding criterion takes the following expression

f f = |σ f |−σy, f ≤ 0 (4.3)

in which σy, f ≥ 0 is the yield limit of the steel.

4.2.2 Interface bond-slip models

Two rate-independent contact laws are proposed in this work with the aim to study the

fiber-to-concrete debonding:

• Elasto-plastic model with linear strain-softening: the same one adopted in the

composite model outlined in Chapter 3.

• Fracture-based debonding model: a richer proposal based on fracture-based

concepts and conceived within a work-softening plasticity formulation;

Table 4.1 describes the key aspects of both models. In particular, f (τ,κ) and g (τ,κ)

represent the two yielding criteria based on the interface shear stress τ and the inter-

nal (strain-like) variable κ of each considered model; τy represents the failure shear

strength.

Both bond-slip models can be directly implemented as plasticity-type constitutive laws

for interface elements. The rate of elastic relative slip, ṡe , is introduced and related to

the shear stress through the elastic stiffness, kE . In the framework of the incremental

plasticity theory, the following basic equation can be used

ṡ = ṡe + ṡp ṡe = τ̇

kE
(4.4)

where inelastic, ṡp , and total interface slip ṡ are introduced in incremental form.

Integrating each constitutive model, the constitutive laws can be defined in terms of

the tangent elasto-plastic constitutive operator, kep
t an , which is specified for loading or

unloading/elastic processes in Table 4.1.
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Table 4.1: Interface bond-slip models.

Fracture-based interface model Elasto-plasticity with strain-softening

Loading criterion f (τ,κ) = τ2 −τ2
y ≤ 0 g (τ,κ) = |τ|− (τy,0 +Q) ≤ 0

Stress-like internal variables τy = τy,0

(
1− wsl

G f

)
κ̇= ẇsl = τ · ṡp κ̇= Q̇ = λ̇ ·kH

Plastic flow ṡp = λ̇ ∂ f
∂τ

= 2 · λ̇ ·τ ṡp = λ̇ ∂g
∂τ

= λ̇ · si g n[τ]

Constitutive equation τ̇= kE (ṡ − ṡp )

Loading-unloading condition λ̇≥ 0, f ≤ 0, λ̇ · f = 0 λ̇≥ 0, g ≤ 0, λ̇ · g = 0

τ̇= k
ep
t an · ṡ

Constitutive tangent operator k
ep
t an = kE ,2 ·

1−
(
∂ f
∂τ

)2
+∆λ ∂ f

∂τ

(
∂ f
∂κ

∂κ
∂sp

)
· ∂

2 f

∂τ2(
∂ f
∂τ

)2
+H/kE ,2

 k
ep
t an = kE

(
1− kE

kE+kH

)
k

ep
t an = kE el ast i c/unloadi ng

4.3 Elasto-plastic joint model with isotropic linear softening

This section presents a classical one-dimensional plasticity model aimed at simulating

the bond-slip behavior of fiber-to-concrete interface.

Based on the additive split of the relative interface displacements and the incremental

elastic law given in Eq. (4.4), the model is formulated by means of the following yield

criterion

g (τ,κ) = |τ|− (τy +Q) ≤ 0 (4.5)

in which the stress-like evolution, in post-elastic regime, is driven by the internal

hardening variable Q, which variation depends on the hardening/softening parameter

kH (to see Table 4.1), obtaining a strain-softening contact law for kH < 0 in post-elastic

response (Fig. 4.2).

Figure 4.2: Bond-slip plasticity model with linear softening.
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The plastic flow is again captured by means of the Kuhn-Tucker loading/unloading and

consistency conditions. The incremental bond-slip law, can be written as

τ̇= kep
t an ṡ (4.6)

where the tangent elasto-plastic module kep
t an , derived as widely reported in literature

[Simo and Hughes, 1998], is reported in Table 4.1.

4.3.1 Basic assumptions and closed-form solution

The complete closed-form analytical solution, in case of bilinear τ− s relationship as in

Fig. 4.2, of the pull-out behavior of fiber-to-cementitious matrix is also presented.

Figure 4.3: Schematic components of pull-out analysis for the analytical solution.

The model, based on small displacement theory, assumes that strains of the matrix

support, surrounding the fiber, can be considered negligible during the debonding

process. According to the previous plasticity model, the contact law (τ− s) presents

a bilinear form, featuring an initial linear ascending branch, with the kE initial slope,

followed, when the elastic limit τy,0 is reached, by a linear softening branch which slope

is now defined as kS = kE

(
1− kE

kE+kH

)
. The model is completed considering an ultimate

slip, su , at which the bond transferred stress is considered null. The full analytical

solution is applied to a single fiber, as schematized in Fig. 4.3.

Based on the assumption that the fiber diameter d f and the local bond-slip relationship

keep unchanged throughout the fiber bond length, lemb , the following infinitesimal

equilibrium condition can be formulated

dσ f [z]

d z
=−4τ[z]

d f
(4.7)

where τ[z] is the shear stress transferred at the interface and σ f [z] the axial steel stress.
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Assuming that bond failure occurs for maximum fiber stresses lower than the yield

limit of fiber steel (as generally observed in experimental investigations), the following

constitutive laws, modeling both the mechanical response of fiber and the interface

adherences, respectively, can be expressed

σ f [z] = E f
d s[z]

d z
(4.8)

and 
τ[z] =−kE s[z] → if s[z] ≤ se

τ[z] =−τy,0 +kS [s[z]− se ] → if se < s[z] ≤ su

τ[z] = 0 → if s[z] > su

(4.9)

being s[z] the slip measured at generic z coordinate while se = τy,0/kE is the elastic slip

value.

After substituting the Eq. (4.8) into Eq. (4.7), the following differential equation, in

terms of s[z], can be obtained

d 2s[z]

d z2 + 4τ[z]

d f E f
= 0 (4.10)

representing the general governing differential equation of the bonded joint between

fiber and concrete which can be integrated assigning the local shear stress-slip laws

defined in Eq. (4.9).

Eq. (4.10) can be solved, under appropriate boundary conditions, in order to obtain the

complete problem in closed form: i.e., in terms of slips s[z], shear stress distribution

τ[z], axial fiber stress σ f [z] and, finally, the global pull-out response Pi − si at the

loaded-end.

In particular, three main differential equations must be integrated:

• Elastic τ− s case: s[z] ≤ se , the adherence law is represented by recoverable shear

stresses dealing with the following differential equation

d 2s[z]

d z2 −α2
1s[z] = 0 (4.11)

at which corresponds the following general integral

s[z] = A1 sinh[α1z]+ A2 cosh[α1z] (4.12)

where A1 and A2 are two unknown constants to determine with appropriate

boundary conditions while α1 = 2
(

kE
d f E f

)1/2
.
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• Softening τ− s case: se < s[z] ≤ su , the interface law is represented by stress

in post-elastic response of the domain, dealing with the following differential

relation

d 2s[z]

d z2 +α2
2s[z]−4

kE +kS

E f
se = 0 (4.13)

which general integral is

s[z] = A3 cos[α2z]+ A4 sin[α2z]+ kE +kS

kS
se (4.14)

with α2 = 2
(

kS
d f E f

)1/2
, A3 and A4 are integration constants.

• Debonded τ− s case: (s[z] > su), the shear stress locally transferred between

concrete and fiber is null, it follows that

d 2s[z]

d z2 = 0 (4.15)

which general integral is

s3[z] = A5z + A6 (4.16)

being A5 and A6 constants of integration.

4.3.2 Full-range bond-slip behavior

This section presents the analytical description of the complete debonding process, by

means of a stage-by-stage integration of the relevant equations, whose form depends

of the actual state of the interface.

Both interface-slip distribution s[z] and the global force-displacement pull-out re-

sponse Pi − si are investigated. For the sake of brevity, many details of the analytical

integration are not provided but can be easily derived in a similar mode as detailed in

Caggiano et al. [2012c] in a similar study dedicated to FRP-to-concrete under pull-out

loading.

When the bond-slip process starts with a low pull-out action, the transferred shear

stresses, along the fiber-to-concrete interface, are in elastic state. This stage is defined

as elastic stage (E) whose solutions in terms of Pi − si curve and slips s[z] are given in

Table 4.2.

Once the applied slip at the loaded extreme becomes greater than the elastic limit

si > se , a new stage takes place called softening-elastic (SE). In this instance the fiber

anchoring interface can be subdivided into two parts: (i) part I closer to the loaded
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Table 4.2: Analytical bond-slip model of the bilinear τ− s relationship.

Closed-form full range pull-out behavior

Elastic stage - E: si ≤ se

Pi =πα1
−1 tanh(α1lemb )d f kE si

- Elastic solution z ∈ [−lemb ,0]: s[z] = cosh[α1(l emb+z)]
cosh[α1lemb ] si

Softening-Elastic stage - SE: si > se

si =
(
1+ kE

kS
(1−cos[α2le ])−

p
kEp
kS

sin[α2le ] tanh[α1(le − lemb )]

)
se

Pi = π
2 d f

3/2
(
kE /

√
kS sin[α2le ]−

√
kE cos[α2le ] tanh[α1(le − lemb)]

)√
E f se

- Softening solution z ∈ [−le ,0]: s[z] =
(
1+ kE

kS
(1−cos[α2(le + z)])−

p
kEp
kS

tanh[α1(le − lemb )]sin[α2(le + z)]

)
se

- Elastic solution z ∈ [−lemb ,−le ]: s[z] = cosh[α1(lemb+z)]
cosh[α1(le−lemb )] se

“Short fibers”: lemb ≤ lsl “Long fibers”: lemb > lsl

Softening stage - S: si > s′B Debonding-Softening-Elastic stage - DSE: si > su

Pi =πd f α2
−1 tan[α2lemb ]([kE +kS ]se −kS si )

si =
(
1+ kE

kS
+ kE

kS
luα2 sin[α2(le − lu )]

− kE
kS

cos[α2(le − lu )]− 1
2α1 tanh[α1(le − lemb )]( d f E f

2kS
α2 sin[α2(le − lu )]+2lu cos[α2(le − lu )]

))
se

- Softening solution z ∈ [−lemb ,0]:
Pi =

(
sin[α2(le−lu )]p

kS
− cos[α2(le−lu )] tanh[α1(le−lemb )]p

kE

)
·

π
2 d3/2

f

√
E f τy,0

s[z] = (si − [kE /kS +1]se )
cos[α2(lemb + z)]sec[α2lemb ]+ (kE /kS +1)se

- Debonding solution z ∈ [−lu ,0]:

s[z] = (
1+kE /kS −kE /kS cos[α2(le − lu )] −√

kE /
√

kS tanh[α1(le − lemb )](α2(lu + z)cos[α2(le − lu )]+
sin[α2(le − lu )])+kE /kSα2(lu + z)sin[α2(le − lu )]

)
se

- Softening solution z ∈ [−le ,−lu ]: already given in the SE-stage

- Elastic solution z ∈ [−lemb ,−le ]: already given in the SE-stage

Debonding-Softening stage - DS: ∀Pi ∈ [0,P ′
C ] Debonding-Softening stage - DS: ∀Pi ∈ [0,PC ]

si = su +Pi

[
α2
πkS

tan−1
(

kEα2
πd f [kE kS su−τy,0(kE+kS )] Pi

)
+ α2

2lemb
πkS

]
- Debonding solution z ∈ [−lu ,0]: s[z] = su −

(
su −τy,0

kE+kS
kE kS

)
α2(lu + z) tan[α2(lemb − lu )]

- Softening solution z ∈ [−lemb ,−lu ]: already given in the SE-stage (it is now necessary to replace lemb → le ).
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end in which s[z] > se and (ii) the remaining part in which s[z] ≤ se . The expressions

of the interface slips for the two parts of the bonded interface, s[z], the pull-out force

Pi and the slip si , reported in Table 4.2, depend on the value of the given parameter

le ∈ [0, lemb] which determines the configuration of the bonded interface. It represents

the abscissa of the point at which the local slip is equal to the elastic limit s[−le ] = se .

The evolution of the fiber debonding process follows two possible alternatives that

follows the SE-stage: (i) the applied slip si in z = 0 reaches the ultimate slip value

su , while the minimum slip s[−lemb] < se : this case represents the transition to the

new Debonding-Softening-Elastic (DSE)- )stage; (ii) the slip at the free-end of the

fiber, reaches the elastic limit, s[−lemb] = se while si < su : this instance follows to the

new only Softening (S)stage. The anchoring length lemb = lsl which verifies the two

mentioned conditions represents a critical value dealing with the boundary between

the short from long anchorages. This length can be now defined as follows

lsl =α2
−1sec−1

 τ0

τ0

(
kS
kE

+1
)
−kS su

 (4.17)

Fibers which anchorage lemb > lsl is defined as “long fibers”, on the contrary, when

lemb ≤ lsl the debonding process follows the second of the two mentioned evolutions

considering the case of “short fibers”. Table 4.2 outlines the complete bond-slip process

in case of both short and long steel fibers.

Short fibers

Based on the “stage-by-stage” procedural study, the complete bond-slip response

for short anchoring fibers is studied with a only Softening (S-)stage that follows the

previous SE-stage. All the bond interface is modeled by means of the softening branch

of Fig. 4.2. A linear-type softening response is obtained by the global Pi − si curve for

the S-stage as plotted in Fig. 4.4 (trait B ′−C ′) which expression is given in Table 4.2.

The point B ′, in the global pull-out curve, posses the following coordinates

s′B =
(
1+ kE

kS
(1−cos[α2lemb])

)
se (4.18)

P ′
B =πα2

−1d f τ0 sin[α2Lc] (4.19)

while the other extreme (C ′ of Fig. 4.4) is given by the following coordinates

s′C = su (4.20)

P ′
C =πα2

−1d f tan[α2le ]([kE +kS]se −kS su). (4.21)
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Figure 4.4: Typical analytical curves of the applied load Pi vs. debonding displacement
si in case of short and long anchorage condition.

Long fibers

In case of “long fibers” (lemb > lsl ), the bond-slip process develops, from the previous

SE-stage, with a crushed zone in the neighbors of the loaded-end, whose length is

identified by lu . The analytical solution of this stage, namely Debonding-Softening-

Elastic (DSE), is given in Table 4.2 in terms of slips s[z] and global pull-out curve Pi −si .

The closed relations depend on the two parameters le and lu which determine the

configuration states of the fiber-to-concrete bond. The values of those two parameters

are strictly connected by means of the following relationships

lu = le −α−1
2 sec−1

kE +kSd f tanh2[α1(le − lemb)]

kE +kS − kS su
se

+k1

 (4.22)

with k1 =
[

kS
2τ0

2tanh2[α1(le − lemb)]
(
(se − su)(kE kS su −τ0(2kE +kS )) +τ0

2tanh2[α1(le − lemb)]
)]1/2

.

The bond-slip process can be followed by assuming the value le and evaluating lu .

Once the elastic contact vanishes (le = lemb), the DSE-stage terminates reaching its

ultimate point C , which coordinates is analytically obtained as follows

sC =
(
1+ kE

kS
[1+α2lu sin[α2(lemb − lu)] −cos[α2(lemb − lu)]]

)
se (4.23)

PC =πα2
−1d f sin[α2(lemb − lu)]τ0. (4.24)

Debonding-Softening (DS) stage represents the ultimate scenario for both “short” and

“long” fibers in which the equilibrium is governed by two types of bond behaviors: i.e.,
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one in which the bond adherence (se < s[z] ≤ su) is in softening range while in the

remaining part the contact is crashed (s[z] > su).

Table 4.2 reports both the expressions of Pi − si and interface slip distribution s[z]

for the DS stage. The obtained results show an unstable behavior characterized by a

snap-back softening response (C −D branch for “long fibers” and part C ′−D branch

for “short fibers”) as shown in Fig. 4.4.

4.4 Fracture-based interface model

The proposed model, described in Table 4.1, is based on the plastic yield condition,

f (τ,κ) ≤ 0,

f (τ,κ) = τ2 −τ2
y ≤ 0. (4.25)

The evolution of the yielding surface during the debonding process is driven by means

of the following scaling law

τy = τy,0

(
1− wsl

G f

)
(4.26)

measured by means of the internal variable κ, defined as the work spent (wsl ) during

the debonding process (“mode II” of fracture) as follows

κ̇= ẇsl = τ · ṡp . (4.27)

The amount of plastic slip rate is governed by the plasticity flow rule ṡp = λ̇∂ f
∂τ , where

the plastic multiplier, λ̇, can be determined in a finite load-step by using the plastic

consistency condition, fn+1(∆λ) = 0, satisfying the yield condition f at the n +1 load-

step, under persistent plastic deformations during the load-interval from n to n +1.

4.4.1 Incremental plastic multiplier

In order to find the accurate value of the incremental inelastic multiplier, ∆λ, in a finite

load-step, the full consistency is imposed according to the following truncated Taylor

series

∆λk+1
n+1 =∆λk

n+1 −
f k

n+1(
∂ f
∂∆λ

)k

n+1

(4.28)
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identifying with k the local iteration step of the Newton-Raphson method of Eq. (4.28).

The quantity ∂ f
∂∆λ can be developed as follows

∂ f

∂∆λ
= ∂ f

∂τ
· ∂τ

∂∆λ
+

[
∂ f

∂τy

∂τy

∂κ

∂κ

∂sp

]
· ∂sp

∂∆λ
(4.29)

The first derivative of the shear stress τ with respect to ∆λ can be obtained as

∂τ

∂∆λ
=−kE ·

(
∆λ

∂2 f

∂τ2 · ∂τ

∂∆λ
+ ∂ f

∂τ

)
(4.30)

then solving for ∂τ
∂∆λ

∂τ

∂∆λ
=−

(
kE

1+∆λkE ·M

)
· ∂ f

∂τ
=−kE ,2 ·

∂ f

∂τ
(4.31)

where kE ,2 =
[
k−1

E +∆λM
]−1

is the modified elastic stiffness and M
(
= ∂2 f

∂τ2 = 2
)

repre-

sents the Hessian operator.

The derivative ∂sp

∂∆λ can be evaluated as

∂sp

∂∆λ
=

[
∂ f

∂τ
−∆λM ·kE ,2 ·

∂ f

∂τ

]
. (4.32)

The remaining terms to calcule of Eq. (4.29) are the follows

∂ f

∂τ
= 2 ·τ (4.33)

∂ f

∂τy
= −2 ·τy (4.34)

∂τy

∂κ
= −τy,0

G f
(4.35)

∂κ

∂sp = τ (4.36)

being τy,0 the shear strength while G f the fracture energy under mode I I of crack.
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4.4.2 Algorithmic tangential operator

The non-linear behavior, within a finite increment step, is solved by adopting the

classical Newton-Raphson solution to solve the non-linear FE equations. The model is

formulated by means of the construction of the algorithmic tangent operator to ensure

a higher convergence rate than the continuous consistent one [Kang and Willam, 1999].

Considering the differentiated form of the incremental shear-slip law, a linearized

tangential format of Eq. (4.4) can be reached

∆τ = kE ·
(
∆s −∆λ∂ f

∂τ

)
⇒

d∆τ= kE ·
(
d∆s −d∆λ

∂ f

∂τ
−∆λd

∂ f

∂τ

)
(4.37)

in which

d
∂ f

∂τ
= ∂2 f

∂τ2 ·d∆τ= M ·d∆τ (4.38)

Substituting the Eq. (4.38) into (4.37) and solving for d∆τ

d∆τ= kE ,2 ·
(
d∆s −d∆λ

∂ f

∂τ

)
(4.39)

being d∆λ the linearized plastic multiplier.

Based on the first-order differential form of the consistency condition, the linearized

tangential format of the plastic multiplier d∆λ can be derived as

d f = ∂ f

∂τ
·d∆τ+ ∂ f

∂κ

∂κ

∂sp ·d∆sp = 0 (4.40)

where the differential form of the plastic slip takes the following expression

d∆sp = d∆λ
∂ f

∂τ
+∆λ∂

2 f

∂τ2 ·d∆τ (4.41)

and substituting the Eqs. (4.41) and (4.39) into (4.40) and solving for d∆λ, the following
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expression can be obtained

d∆λ=
∂ f
∂τ ·kE ,2 +∆λ

(
∂ f
∂κ

∂κ
∂sp

)
· ∂

2 f
∂τ2 ·kE ,2(

∂ f
∂τ

)2
·kE ,2 +H

·d∆s (4.42)

in which the scalar hardening parameter H assumes the following expression

H =−
[
∂ f

∂τy

∂τy

∂κ

∂κ

∂sp

]
·
[
∂ f

∂τ
−∆λ∂

2 f

∂τ2 ·kE ,2 ·
∂ f

∂τ

]
. (4.43)

Substituting d∆λ into Eq. (4.39), the constitutive law and the algorithm tangent opera-

tor kep
t an can be obtained

d∆τ= kE ,2

1−

(
∂ f
∂τ

)2
·kE ,2 +∆λ∂ f

∂τ

(
∂ f
∂κ

∂κ
∂sp

)
· ∂

2 f
∂τ2 ·kE ,2(

∂ f
∂τ

)2
·kE ,2 +H

 ·d∆s (4.44)

in compact form:

d∆τ= kep
t an ·d∆s.

4.4.3 Shear-slip test

The example proposed in this section outlines the interface response under direct

fracture mode I I . A relative shear slip is applied at Gauss-point level to capture the

fundamental behavior of the proposed model.

The parameters which control the numerical predictions are obtained by considering

the elastic stiffness kE = 120 MPa/mm and the initial shear strength τy,0 = 2.2 MPa.

Fig. 4.5 reports the tangential stress vs. relative slip plots for different values of the

fracture parameter: G f = 0.05,0.10,0.15,0.20 and 0.25 N /mm, respectively. The elastic

contact is already equal for each case until the yield stress in shear is reached. After

the peak strength the shear-slip response depicts a descending exponential type of

curves characterized by an asymptotic vanishing of the shear stress. The influence of

the fracture energy, G f , correctly captures an increment of the ductility as the fracture

parameter increases.
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Gf � 0.05 N �mm

Gf � 0.10 N �mm

Gf � 0.25 N �mm

Gf � 0.15 N �mm
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Figure 4.5: Bond-slip model: shear stress (τ) vs. relative slip (s) for different values of
fracture energy G f .

4.5 Comparison between numerical calculations and experi-

mental results

This section presents a comparison between numerical simulations and experimental

results. The effects of matrix strength, fiber length and diameter are analyzed in the

following with the aim of emphasizing the predictive potential of the proposed unified

formulation.

4.5.1 Effect of matrix strength and fiber anchorage

This section is mainly aimed at illustrating the numerical predictions obtained by

applying the proposed model to the experimental tests reported by Shannag et al. [1997].

The bond behavior of steel fibers embedded in two different cementitious matrices

is investigated for: (i) High Strength cement based Matrix (HSM) characterized by a

compressive strength of 150 MPa and (ii) Conventional mortar (CSM) with compressive

strength of 40 MPa.

Three different fiber anchoring lengths are also considered: i.e., lemb = 6mm, 12mm

and 18mm, respectively. Smooth steel fibers, having a tensile strength of 2990 MPa, a

module of elasticity of 200 GPa with diameter of 0.19mm, were used by Shannag et al.

[1997] and analyzed herein.

Numerical simulations are performed by considering the material interface parameters

schematically described in Table 4.3. Non-linear FEM analyses are based on 20 trusses

and 20 interface elements (Fig. 4.1) as optimal balance between accuracy and efficiency.

Several curve predictions in terms of load-displacement behavior at the loaded-end of

the fiber under bond-slip are analyzed. Fig. 4.6 to 4.9 report the load-slip behavior for
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4.5. Comparison between numerical calculations and experimental results

Table 4.3: Model parameters according to the experimental tests by Shannag et al.
[1997].

Fracture−Based Model Plasticity−Based Model

C SM
τy,0 = 2.2 MPa su = 1.56mm

kE = 200 MPa/mm G f = 2.42 N /mm
τy,0 = 2.2 MPa su = 1.56mm

kE = 200 MPa/mm kS = 1 MPa/mm

HSM
τy,0 = 5.3 MPa su = 1.46mm

kE = 1000 MPa/mm G f = 23.41 N /mm
τy,0 = 5.3 MPa su = 1.46mm

kE = 1000 MPa/mm kS = 1.2MPa/mm

both HSM and CSM.
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Figure 4.6: Fracture-based model results (continuous lines) vs. experimental data
(square, circular and rhomboidal points) by Shannag et al. [1997] of the pull-out behav-
ior on steel fibers from CSM.

The significant improvement (up to three times) of the bond strength in case of HSC,

compared to conventional mortar, is well captured by the present models. The effect of

the concrete kind is directly reflected on the bond-contact laws as outlined in Table 4.3.

Particularly, it can be observed as the shear strength, τy,0, increases in direct relation to

the compressive strength of the surrounding matrix.

Furthermore, Figs. 4.6 to 4.9 show that the increment of the pull-out response is directly

related to the anchoring length (varying from 6 to 18mm). It can also be noted that the

fracture-based model captures better the bond–slip process than the analytical bilinear

relationship. Fig. 4.7 and 4.9 show as the results based on the analytical relationship

and the FEM results are almost identical, this means that the mesh adopted is sufficient

to reduce modeling errors due to the FE-discretization.
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Figure 4.7: (a) Analytical and (b) FEM results (continuous lines) for bilinear τ−s against
the experimental data (square, circular and rhomboidal points) by Shannag et al. [1997]
of the pull-out behavior on steel fibers from CSM.
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Figure 4.8: Fracture-based model results (continuous lines) vs. experimental data
(square, circular and rhomboidal points) by Shannag et al. [1997] of the pull-out behav-
ior on steel fibers from HSM.

4.5.2 Fiber anchorage and diameter effects.

This section presents some predictions using experimental data from pull-out tests

which were carried out on steel fibers anchored in concrete systems. The fracture based

model given in Section 4.4 is calibrated to predict the load displacement curves of

straight and smooth steel fibers, with different diameters and anchoring lengths, tested

under pull-out loads by Banholzer et al. [2006].

The following material parameters, dealing with an unified fracture-based τ−s rule, are

employed for all predictions of this section: τy,0 = 2.4 MPa, su = 0.83mm, kE = 120 MPa/mm

and G f = 0.80 N /mm. Numerical simulations are in good agreement with results ob-

served in pull-out tests from Fig. 4.10 to 4.12. Load-slip curves are significantly affected

by both fiber diameter which varies from d f = 0.8,1.5 and 2.0mm, and the embedded
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Figure 4.9: (a) Analytical and (b) FEM results (continuous lines) for bilinear τ− s vs. the
experimental data (square, circular and rhomboidal points) by Shannag et al. [1997] of
the pull-out behavior on steel fibers from HSM.

lengths, varying from lemb = 22.1,27.1 and 35.0mm. The proposed procedure well

captures the effects of both parameters.
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Figure 4.10: Fracture-based numerical prediction (continuous line) vs. experimental
data (point lines) by Banholzer et al. [2006] for a steel fiber diameter of 0.8mm and an
embedded length of 22.1mm.

Only the fracture-based results are outlined and compared against the experimental

evidence in this section. The bilinear bond-slip relationship posses, as demonstrated in

Section 4.5.1, a minor prediction capability for pull-out tests, compared to the fracture-

based proposal. For these reason that the numerical predictions realized by employing

the bilinear bond-slip curve are not proposed in this section.

Finally, this discussion focuses on the detailed simulation of the complete debonding

processes developing in the three cases whose overall response is described in Fig.

4.10 to 4.12. To this end, fiber-to-concrete shear stress and fiber strain distributions

throughout the bond length are obtained by numerical simulations. Fig. 4.13 to 4.15

show such results for different values of bond length and diameter. In particular, Figs.

4.13b, 4.14b and 4.15b report the distribution of interface shear stresses throughout
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Figure 4.11: Fracture-based numerical prediction (continuous line) vs. experimental
data (point lines) by Banholzer et al. [2006] for a steel fiber diameter of 1.5mm and an
embedded length of 27.1mm.
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Figure 4.12: Fracture-based numerical prediction (continuous line) vs. experimental
data (point lines) by Banholzer et al. [2006] for a steel fiber diameter of 2.0mm and an
embedded length of 35.0mm.

the bond length for the same force levels labeled by the dots represented in Figs. 4.13a,

4.14a and 4.15a for the three specimens under consideration. Figs. 4.13c, 4.14c and

4.15c report the axial strain distribution, namely εs[z] = d s
d z , at each considered abscissa

z of the analyzed steel reinforcement tested under pull-out: each curve refers at several

force levels mentioned on the Pi − si curves.

4.6 Closure chapter and some conclusions

This chapter presented a unified formulation for describing the overall tensile of fibers

embedded in cementitious matrices. A series of final remarks can be drawn out on the

bases of both the model formulation and the proposed applications:

• The proposed unified formulation is intended as a key element to be employed

in the numerical model proposed in Chapter 3 aimed at explicitly simulating the

mechanical behavior of FRCC by taking into account the discrete nature of such

materials and the contributions of the various constituents within the framework
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Figure 4.13: Pull-out numerical prediction for a steel fiber diameter of 0.8mm and an
embedded length of 22.1mm by Banholzer et al. [2006]: (a) load-slip curve Pi − si , (b)
interface shear stress distributions τ− z and (c) axial strain distributions εs − z.

of the so-called meso-mechanical approach;

• Two alternative constitutive models are proposed for obtaining the above men-

tioned formulation: i.e., the first one is based on the simpler elasto-plastic behav-

ior with isotropic linear softening, while, the second one is founded on a more

complex fracture energy-based contact model;

• The limits derived by assuming a simplified bilinear τ−s relationship for simulat-

ing the response of fibers under tensile stresses emerged in the final comparative

analysis: although such a relationship allows for a fully analytical solution of

the problem under consideration, it lacks in simulating the highly non-linear

response which develops in the post-peak stage;

• Thus, a more complex, but more accurate fracture-based energy softening model

is also presented and the key aspects of the numerical procedure needed for

handling such a relationship are outlined;

• The solutions obtained by considering both models are validated against exper-

imental results obtained on pull-out tests of smooth and straight steel fibers,

currently available in the scientific literature;

• Both models demonstrated the capability of the proposed unified formulation to

capture the key aspects of the complete pull-out response of fibers taking into
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Figure 4.14: Pull-out numerical prediction for a steel fiber diameter of 1.5mm and an
embedded length of 27.1mm by Banholzer et al. [2006]: (a) load-slip curve Pi − si , (b)
interface shear stress distributions τ− z and (c) axial strain distributions εs − z.

account the possible influence of relevant parameters, such as bond length and

fiber diameter.

As a final comment, it is worth noting that the proposed unified formulation can be

straightforwardly employed in numerical models aimed at simulating the behavior

of FRCC through a discrete-crack approach, as such model (i.e., meso-mechanical

one) explicitly simulates the bond-slip response of fibers embedded in cementitious

matrices. The adoption of the presented formulation within the framework of general

meso-mechanical models of FRCC is, at the same time, the key motivation and the

most relevant development of the present Chapter.

Besides the weaknesses described for the above mentioned bilinear relationship, nu-

merical simulations are generally in good agreement with the corresponding experi-

mental data. Also, the meso-scale formulation proposed by means of the zero-thickness

interface formulation presented in Chapter 3 and then validated in the following Chap-

ters (5 and 6), actually considers the bilinear proposal for the fiber debonding into the

complete formulation for FRCC failure analysis.
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Figure 4.15: Pull-out numerical prediction for a steel fiber diameter of 2.0mm and an
embedded length of 35.0mm by Banholzer et al. [2006]: (a) load-slip curve Pi − si , (b)
interface shear stress distributions τ− z and (c) axial strain distributions εs − z.
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5 Model performance and numerical
predictions

This chapter proposes a preliminary calibration and some applications of the proposed

interface model for FRCC failure analysis. Numerical simulations against available

experimental test data are presented for investigating the soundness and capabilities

of the proposed methodology.

5.1 Numerical analyses

For the calibration purpose, experimental results on Steel Fiber-Reinforced Concrete

(SFRC) specimens, tested in pure tension, are considered while for the evaluation of

model predictions, failure processes under mixed-modes of fracture, in plain and SFRC

notched specimens, are taken into account.

5.1.1 Calibration of the interface model for SFRC

In this section, the interface model is calibrated by using experimental results per-

formed on SFRC specimens tested in pure traction. One interface element, with dif-

ferent fiber contents, connecting two 4-node plane stress isoparametric elements is

employed for this purpose. Particularly, the basic element patch, shown in Fig. 5.1, has

been considered.

The number of fibers per interface is evaluated by means of the expression given by

Krenchel [1975]

n f =α~N
ρ f

A f
Ai (5.1)

where ρ f is the fiber content, α~N is the orientation factor (assuming the value of 0.405

[Soroushian and Lee, 1990]), while A f and Ai are the cross-sectional area of a single

fiber and the interface area, respectively.
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Figure 5.1: Test set-up of tensile tests performed by Li et al. [1998] and the correspond-
ing analysis model.

The tensile tests on SFRC specimens, presented in Li et al. [1998], are firstly considered.

Two different kinds of fibers, both with hooked ends, have been utilized as follow:

• Dramix steel fibers (diameter d f = 0.5 mm, length l f = 30 mm, density γ f = 7.8

g /cm3, tensile strength f f u = 1.20 GPa and E f = 200 GPa).

• Harex steel fibers (with arched cross section of area = 2.2×0.25 mm2, length l f =
32 mm, density γ f = 7.8 g /cm3, tensile strength f f u = 0.81 GPa and E f = 200

GPa).

An indirect calibration of the numerical model has been performed to identify the

model parameters, previously outlined in Chapter 3. The set of those parameters (i.e.,

the equivalent elastic modulus of fibers, Ed , the equivalent interface elastic limit, σy,d ,

and others mentioned in Chapter 3), collected in the vector q, have been derived by the

following least-square procedure

q̄ = argmin
q

[
n∑

i=1

(
σth

[
εexp,i ;q

]−σexp,i
)2

]
(5.2)

being σth
[
εexp,i ;q

]
the model prediction of the tensile stress corresponding to the
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Figure 5.2: Experimental data [Li et al., 1998] and numerical simulation for SFRC with
Dramix fibers.

experimental strain εexp,i and the set of internal parameters q, while σexp,i is the corre-

sponding experimental stress. In Eq. (5.2), n represents the number of available tensile

stress measurements of the considered experimental test.

For the least-square calibration of the model parameters, experimental data on SFRC

by Li et al. [1998] for both Dramix and Harex type of steel fibers were considered.

The case of plain concrete was also included in the calibration analysis. The pa-

rameters of the proposed model, optimally adjusted according to the Eq. (5.2), in-

clude the elastic parameters of the rigid continuum elements representing the mor-

tar matrix: Ec = 37GPa and ν = 0.18. The parameters of the inelastic interface re-

sult: kN = 1000 MPa/mm, kT = 200 MPa/mm, tanφ0 = tanβ = tanφr = 0.6, χ0 = 4.0 MPa,

c0 = 7.0 MPa, G I
f = 0.12 N /mm, G I I a

f = 1.2 N /mm, σdi l = 10 MPa, αχ =−0.15 . The remain-

ing interface parameters are considered null.

Some of the fiber parameters are derived by the main mechanical parameters of the

component materials, while the others were obtained with the above indicated cal-

ibration procedure. In summary, fiber parameters result: Ed = Es , σy,d = 18% σy,s ,

kc = 440N /mm3, α f = 7.7 and Hs = Hd = Hdow = 0.

The available experimental results of direct tensile tests, represented by dotted lines in

Figs. 5.2 and 5.3, are compared with the corresponding model predictions represented

by continuous ones. The plotted stresses and strains in the model prediction (continu-

ous curves of Figs. 5.2 and 5.3) correspond to their average amounts in the single-crack

model of Fig. 5.1.

Particularly, in Figs. 5.2 and 5.3 the experimental results by Li et al. [1998] are com-

pared with the corresponding numerical simulations performed through the calibrated

numerical model. Specimens reinforced with either Dramix or Harex fibers are con-
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Figure 5.3: Experimental data [Li et al., 1998] and numerical simulation for SFRC with
Harex fibers.

sidered with fiber contents (ρ f = 0, 2, 3 and 6%). The results in those figures show

that the proposed interface model, with the internal parameters indicated above, leads

to accurate predictions of SFRC failure behavior in the direct tensile test when low,

medium and high fiber contents are considered.

Beyond the general accuracy of the model predictions and, consequently, the sound-

ness of its assumptions and formulation, the results in Fig. 5.2 and 5.3 emphasize

the strong dependency of FRCC mechanical behavior on the fiber content and quality.

A progressive transition from the brittle failure mode characterizing the behavior of

plain concrete in tension to a more and more ductile post-peak response can be clearly

recognized when the fiber content increases.

The diagrams in Figs. 5.2 and 5.3 show the different behaviors of SFRC based on

Dramix and Harex fibers, both hooked at the end. The more ductile performance

shown in Fig. 5.2 is probably due to the fact that the volume of the single Dramix fiber

is significantly smaller (almost three times [Li et al., 1998]) than that of Harex types

(Fig. 5.3). Consequently, a significantly higher number of fibers are present in the first

specimens (for the same considered fiber content) resulting in a more homogeneous

material.

5.1.2 Predictive analysis of SFRC failure behavior under mixed-modes of
fracture

To asses the predictive capability of the model in terms of failure behavior of SFRC

specimens, the stress history on plane concrete panels by Hassanzadeh [1990] are

considered in this subsection.

These experimental tests were performed on prismatic concrete specimens of 0.07×0.07
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(a) (b) (c)(a) (b) (c)

Figure 5.4: Test set-up of notched specimen performed by Hassanzadeh [1990]: (a)
concrete sample, (b) tensile load in the first part of the test and (c) mixed fracture
displacements co-imposed in the second part of the experiment.

m2 cross section with a 0.015 m deep notch along their perimeters (Fig. 5.4a). Both

normal and transverse relative displacements are co-imposed to the two parts of the

notched specimen with the aim of reproducing the cracking processes in concrete

under mode I and II types of fracture depending on the angle between the two imposed

displacement components. During the first part of these tests only normal tensile

displacements u are applied, as in Fig. 5.4b, until the peak strength is reached. In the

second part of the test (Fig. 5.4c), tensile displacements are combined with transverse

ones, applied on the upper part of the notched specimen, and defining a pre-fixed

angle (namely, tanθ = u/v).

For the numerical analysis of the Hassanzadeh [1990] tests, the FE-discretization and

boundary conditions shown in Fig. 5.5 are considered. Four different cases were

evaluated with θ = 90o , 75o , 60o , 30o and in each case zero (n f = 0), ten (n f = 10),

twenty (n f = 20) and thirty (n f = 30) steel fibers, crossing the joint element, were

considered.

The interface model parameters, calibrated starting from the experimental data by

Hassanzadeh [1990], are: kN = 500 MPa/mm, kT = 200 MPa/mm, tanφ0 = tanβ= tanφr =
0.6, χ0 = 2.8 MPa, c0 = 7.0 MPa, G I

f = 0.08 N /mm, G I I a
f = 10G I

f = 0.8 N /mm, σdi l = 15 MPa

. All remaining parameters, characterizing the interface model, are considered null.

For the continuum elements, the elastic parameters Em = 25 GPa and ν = 0.2 were

considered, representing the Young modulus and Poisson’s ratio, respectively. Dramix

fibers were used in those analyses characterized with the same parameters given in

subsection 5.1.1.

Fig. 5.6 shows the results with different number of fibers corresponding to the uniaxial

tensile test (θ = 90o). It can be clearly observed that the model is able to simulate the

increment in both ductility and energy released when the number of fibers increase.
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Figure 5.5: Boundary conditions and FE-discretization with one single interface crossed
by short fibers for Hassanzadeh [1990] tests on SFRC panels.

Figs. 5.7a, 5.8a and 5.9a show the model predictions in terms of normal stresses

vs. displacements (σ−u) of Hassanzadeh [1990] experiments for θ = 75o , 60o and

30o , respectively. As it can be observed, the combined action of normal and shear

displacements causes a more pronounced softening branch in post-peak regime. The

tensile strength tends to zero more rapidly and, moreover, changes its sign becoming a

compressive stress, due to the fact that the normal dilatancy, produced by the applied

shear displacements, exceeds the fixed normal opening rate.

The inclusion of steel fibers leads to an increment of the tensile strength, but also of the

ductility in post-peak regime. Simultaneously, the compression branch of the normal

stress continuously reduces and then disappears. In other word, the steel fibers reduce

the material dilatancy.

Figs. 5.7b, 5.8b and 5.9b report the shear stresses against the relative transverse displace-

ments. The significant influence of fiber content on both peak stress and post-peak

toughness can be (again) easily recognized.

The simulation of the interface model in this section demonstrates the capability

of the proposed formulation to capture the variation of stiffness, strength, ductility

and the overall behavior of concrete due to the presence of steel fibers in both pure

tensile failure mode as well as under mode II type of fracture with different levels of

confinement pressure (originated by constraining the dilatancy of both plain and fiber

concretes).

86



5.1. Numerical analyses

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.00 0.05 0.10 0.15 0.20

σ
[M

P
a

]

u [mm]

nf = 30

nf = 20

nf = 10

plain joint

θ = 90�

[M
P

a
]

Figure 5.6: Normal stress vs. relative vertical displacement performed with different
amount of fibers and θ = 90o .
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Figure 5.7: Hassanzadeh [1990] tests with different number of fibers and θ = 75o : a)
normal stress vs. relative normal displacement and b) shear stress vs. relative tangential
displacement.
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Figure 5.8: Hassanzadeh [1990] tests with different number of fibers and θ = 60o : a)
normal stress vs. relative normal displacement and b) shear stress vs. relative tangential
displacement.
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Figure 5.10: Comparison between numerical predictions and experimental results by
Li and Li [2001]: SFRC with “Dramix type II” fibers.

5.1.3 Parametric study

The parametric analyses presented in this section are performed by means of the two

linear elastic four node FEs connected by one interface element, which FE set-up and

boundary conditions are given in the above subsection as shown in Fig. 5.5. Therefore,

the results are directly related to the interface model predictions.

Fiber length

The considered experiments on SFRC contain two different fiber types, namely “Dramix

type I” and “type II”, whose fundamental characteristics are given in Table 5.1. The

model parameters, considered in these numerical analyses and adjusted according to

the experimental data given in Li and Li [2001], are: kN = 98.75GPa, kT = 32.92GPa,

tanφ0 = tanβ = tanφr = 0.6, χ0 = 4.0 MPa, c0 = 7.0 MPa, G I
f = 0.12 N /mm, G I I a

f =
1.2 N /mm . On the other hand, the considered parameters for the fiber-to-concrete in-

teraction mechanisms are: τy,a = 1.95 MPa, kE = 52.5MPa/mm and kS = 1.70MPa/mm

for the bond-slip strength; κ1 = 6.5, fc = 10 ·χ0 and kdow = 0.23 for the dowel effect. The

indirect calibration procedure outlined in subsection 5.1.1 was performed to identify

the model parameters above outlined.

Table 5.1: Fiber types employed in the experimental tests by Li and Li [2001].

Density[g /cm3] d f [mm] l f [mm] σy,s[GPa] Es[GPa]
DramixtypeI 7.8 0.5 30 1.20 200
DramixtypeII 7.8 0.5 50 1.20 200

Model predictions are compared with the experimental data by Li and Li [2001]. The

comparisons in terms of force-displacement diagrams are shown in Figs. 5.10 and 5.11.

Particularly, the stress-crack opening response for SFRC with steel “Dramix type II”
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Figure 5.11: Comparison between numerical predictions and experimental results by
Li and Li [2001]: SFRC with “Dramix type I” fibers.
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Figure 5.12: Comparison between the numerical predictions of the test by Li and Li
[2001] on SFRC with “Dramix type II” fibers: (a) full debonding vs. 50% of the debonding
strength and full fracture energy G I

f , (b) full debonding strength and 100% vs. 50% of

G I
f .

fibers, and fiber contents of 3.0% and 4.0%, are given in Fig. 5.10. While Fig. 5.11 shows

numerical and experimental comparisons of stress-crack opening displacements of

tests on SFRC with “Dramix type I” fibers, and fiber contents of 7.0% and 8.0%.

The numerical predictions compared against experimental results demonstrate a very

good agreement. Actually, the interface model is able to realistically reproduce the

overall response behaviors of SFRC.

It should be noted that all previous numerical predictions have been obtained by just

changing the fiber contents (ρ f ) and/or fiber types (changing the l f value), according

to the experimental properties. No particular further calibrations or adjustments were

required for each test.
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Figure 5.13: (a) Experimental test by Hassanzadeh [1990] and numerical prediction for
SFRC with “Dramix type I” fibers, with ρ f = 5.0% and, (b) effect of the dowel strength
on the stress-opening displacements in mixed-modes of fracture.

Debonding strength

Stress-crack opening predictions of SFRC with steel “Dramix Type II” fibers are evalu-

ated when full and 50% of the debonding strength capacity of steel fibers to concrete

are considered. This results, depicted in Fig.5.12 (a), clearly illustrate the capability

of the interface model to realistically reproduce the incidence of the main parameter

governing the interaction between concrete and steel fiber in mode I type of fracture.

Fracture energy release

In Fig. 5.12 (b), the stress-crack opening behavior of the same experiment on SFRC

is illustrated, but corresponding to the case when only 50% of the concrete fracture

energy release in mode I is considered. As can be observed from Fig. 5.12 (a) and (b)

the interface model is able to capture the influence of fundamental properties of the

constituents in the overall response behavior.

Dowel strength

Finally, the stress history on concrete panels by Hassanzadeh [1990] is evaluated as it

activates failure processes under both mode I and II types of fracture. These experi-

mental tests are performed on prismatic concrete specimens of 0.07×0.07 m2 cross
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section with a 0.015 m deep notch along their perimeters. Both normal and transverse

relative displacements are co-imposed on the upper border of the notched specimen

while the remaining borders are fixed with the aim of reproducing cracking processes

in concrete under mode I and II types of fracture. During the first part of these tests

only normal tensile displacements u are applied until the peak strength is reached.

Then, tensile displacements are combined with transverse ones v defining a prefixed

load angle (tanθ = u/v).

Fig. 5.13 (a) shows the model predictions in terms of σ−u and τ− v curves, analyzing

the case in which θ =π/6 on both plain and SFRC concrete panels. The proposed appli-

cation consider the model parameters previously calibrated and given in subsection

5.1.2. Numerical analyses demonstrate on the one hand, the very good agreement of

the numerical prediction with the plain interface regarding the experimental results

on plain concrete tests by Hassanzadeh [1990]. On the other hand, the results also

illustrate the significant influence of fiber reinforcements on the peak strength and

post-peak ductility of the concrete panel response (when ρ f = 5.0%).

Fig.5.13 (b) deals with the stress-crack opening predictions of SFRC when a reduction

of the 50% for the dowel strength is considered. Model predictions mainly capture

the fundamental influence of the dowel effect on the overall response behavior under

mixed failure modes. As expected, the dowel effect controls the transverse interaction

between concrete and steel fiber in this complex failure mode.

No experimental results are currently available in scientific literature related to the

Hassanzadeh type tests on SFRC. Nevertheless, the numerical results here presented,

provide realistic predictions of peak stresses, ductility and post-peak behavior of SFRC

tested in mixed fracture modes like the ones in the Hassanzadeh [1990] tests.

5.2 Cracking analysis of the proposed interface model for FRCC

This section is aimed at analyzing the incidence of steel fibers on the post-cracking

performance for several stress states (lying on the initial yielding surface) under overall

possible failure modes. As a matter of principle, the method herein applied could

be intended as a similar approach as used for continuum-based models, where the

localization analysis is mainly performed by employing the analytical solution of the

classical discontinuous bifurcation condition [Folino, 2012]. In principle, strong dif-

ferences can be noted between the localized failure analyses of classical continuum

approaches compared with the discontinuous analysis outlined in this section. How-

ever, in several aspects and conclusion both procedures are quite similar.

A large amount of numerical results are presented in this section. They are based on the

cracking analysis by considering different SFRC qualities and load scenarios. The results

illustrate a wide range of failure modes which characterize the post-peak response
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of both plain and SFRC when different stress histories and stages are considered. A

dimensionless “cracking indicator” is discussed and analyzed.

5.2.1 Post-cracking behavior

An extensive post-cracking analysis is proposed, based on the FRCC interface model

outlined in the previous chapters. For this purpose, several interface cracking condi-

tions are considered for different load scenarios. In this analysis the “cracking indicator”

(CI) defined as

C I (θ,ρ) = N
t ·E ep ·N

N
t ·E ·N

(5.3)

being θ (with tanθ = u/v) the initial cracking angle (Fig. 5.14) and N the unit vector,

defining the normal of a potential cracking direction, expressed as

N = [N1 , N2 ]t = [cos(ρ),sin(ρ)]t (5.4)

Figure 5.14: ρ and θ angles defined in the interface stress space.

The angles ρ is depicted in Fig. 5.14 and describes the set of all possible vectors N of

the failure surface. E ep and E are the constitutive tangent operator and the elastic

one, respectively, defined in Chapter 3. The superscript t deals with the transposition

vectorial operation.

The performance of the “cracking indicator” is proposed in terms of the ρ-angle (be-

tween N and the σT direction, as depicted in Fig. 5.14). Particularly, ρ = π
2 indicates a

pure tensile fracture mode path, while ρ = 0 outlines a direct shear without dilatancy.

For any given θ angle, a particular value for ρ (labeled as critical one ρcr ) exists for

which the mentioned CI parameter assumes its minimum: ρcr defines the weakness

direction of the considered composite interface.
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5.2.2 Failure performance and cracking indicators for mixed fracture modes

In this subsection, the post-cracking analysis under mixed-modes condition and peak

stress is presented. The analyses are performed for three different SFRC: i.e., plain

concrete, Dramix steel fibers with 3.0 and 6.0%. All the numerical predictions refer to

the calibrated tests proposed in Section 5.1.1. Different initial θ-angles, at peak stress

under mixed-modes of fracture, are considered.

A set of six interface stress states are selected and analyzed for the three types of SFRC

under consideration. These stress states are indicated on the maximum interface

strength following the numeration of Fig. 5.15. Particularly, the considered stress states

are listed below:
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Figure 5.15: Schematic interface stress states selected for the post-cracking analysis.

• Point 1: Uniaxial Tensile (UT): σN
σT

= 1
0 =⇒ θ = π

2 ;

• Point 2: Tension-Shear (TS2): σN
σT

= 1
2−

p
3
=⇒ θ = 5π

12 ;

• Point 3: Tension-Shear (TS3): σN
σT

= 1
1p
3

=⇒ θ = π
3 ;

• Point 4: Tension-Shear (TS4): σN
σT

= 1
1 =⇒ θ = π

4 ;

• Point 5: Tension-Shear (TS5): σN
σT

= 1p
3
=⇒ θ = π

6 ;

• Point 6: Tension-Shear (TS6): σN
σT

= 1
2+

p
3
=⇒ θ = π

12 ;

The results of these analyses, performed with the FRCC interface model at peak stresses,

are presented in Fig. 5.16, while the same post-cracking performance results are also

depicted in polar plots in Figs. 5.17, 5.18 and 5.19.
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The critical angles, ρcr , at which the CI parameters assume its minimum values, for the

above considered materials (plain concrete and FRCCs with Dramix steel fibers having

the 3.0 and 6.0% of fiber content) are:

• Point 1: Uniaxial Tensile (UT): θ = π
2 = 90◦, ρcr,PI = 90◦, ρcr,3.0% = 90◦ and

ρcr,6.0% = 90◦;

• Point 2: Tension-Shear (TS2): θ = 5π
12 = 75◦, ρcr,PI = 83.15◦, ρcr,3.0% = 85.31◦ and

ρcr,6.0% = 86.03◦;

• Point 3: Tension-Shear (TS3): θ = π
3 = 60◦, ρcr,PI = 76.65◦, ρcr,3.0% = 80.26◦ and

ρcr,6.0% = 80.98◦;

• Point 4: Tension-Shear (TS4): θ = π
4 = 45◦, ρcr,PI = 67.99◦, ρcr,3.0% = 73.77◦ and

ρcr,6.0% = 75.21◦;

• Point 5: Tension-Shear (TS5): θ = π
6 = 30◦, ρcr,PI = 57.17◦, ρcr,3.0% = 65.11◦ and

ρcr,6.0% = 67.27◦;

• Point 6: Tension-Shear (TS6): θ = π
12 = 15◦, ρcr,PI = 43.47◦, ρcr,3.0% = 52.85◦ and

ρcr,6.0% = 55.73◦.

where the subscript PI indicates the “Plain Interface”, while 3.0% and 6.0% outline the

fiber percentages.

Observing these results, the following conclusions can be itemized:

• The first comment deals with the observation that CI assumes negative values

only for plain concrete and in particular zone of the ρ angle. While, only positive

CI characterize the SFRC specimens (Fig. 5.16). This is due to the post-cracking

softening response of the unreinforced concrete, contrarily the SFRC with 3.0%

and 6.0% of fiber contents are charactertized by a post-hardening crack opening

behavior.

• In the case of UT-test, the angle θ (initial load angle) coincides with ρcr (angles

at which the CI reaches its minimum value) for each type of composite: i.e.,

plain concrete and SFRCs. Practically, no difference was observed for the weak

cracking directions in the considered concretes, resulting θ = ρcr = π
2 for both

plain and SFRC with 3.0% and 6.0% of fiber contents.

• The cracking indicator assumes the unity value when the stress increment deals

with a pure elastic response of the considered interface law: the polar plot mainly

outlines a curve as part of circle with a unitary radius. From a mechanical stand-

point, these points represent stress increments in compression/shear states,
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Figure 5.16: Post-cracking analysis at peak stress for different concrete types: plain
concrete and SFRC with “Dramix type I” fibers having fiber contents of 3.0% and 6.0%.
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Figure 5.17: Polar plots of post-cracking analysis of TS5 and TS6 for different concrete
types: plain concrete and SFRC with “Dramix type I” fibers having fiber contents of
3.0% and 6.0%.
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Figure 5.18: Polar plots of post-cracking analysis of TS3 and TS4 for different concrete
types: plain concrete and SFRC with “Dramix type I” fibers having fiber contents of
3.0% and 6.0%.
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Figure 5.19: Polar plots of post-cracking analysis of TS2 and UT for different concrete
types: plain concrete and SFRC with “Dramix type I” fibers having fiber contents of
3.0% and 6.0%.
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where the proposed interface model for FRCC mainly behaves in a elastic man-

ner.

• For the different initial load stages ρ, it can be observed that the critical angles

ρcr , at which corresponds the minimum values for the CI parameter, slightly

turns toward failure modes I of fracture ρcr −→ π
2 as the fiber concrete increases.

• As final comment, it can be stated that the influence of the fiber effect is relevant

in all cases, but it is more pronounced in the mixed fracture modes (acting in

both CI values and the critical value of the ρ angle) than for the tensile one where

only the value of CI is influenced.

5.3 Closure chapter and concluding remarks

This chapter proposes the numerical application at material (Gauss-point) level of the

interface model for simulating the cracking behavior of Fiber-Reinforced Cementitious

Composites (FRCCs). The adopted formulation on the interface element for connecting

nodes of two adjacent cement matrix elements is one of the key contribution of the

present chapter. The proposal, completely detailed in Chapter 3, was obtained by

extending an interface model already available for analyzing the behavior of plain

concrete members. Thus, the contribution of fibers bridging cracks possibly developing

throughout those interfaces is modeled within the zero-thickness elements, along with

the bonding behavior of cement matrix.

Finally, applications of the numerical procedure on both notched specimens tested

under mixed fracture modes and FRCC samples in tension demonstrate the soundness

of the proposed model and its accuracy in simulating the cracking behavior of fiber-

reinforced concrete members. The proposed simulations of experimental tests under

several complex states for stresses demonstrate the accuracy of the proposed interface

model to reproduce the mechanical behavior of FRCCs. In particular, the role of the

fiber content in turning the brittle behavior of plain concrete in tensile regime in

an increasing ductile response was accurately reproduced by the model, after the

calibration of the internal mechanical parameters based on experimental results.
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6 Structural scale failure analysis of
fiber reinforced concrete based on
a discrete crack model
TO BE WRITTEN
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7 Cracked hinge numerical for fiber-
reinforced concrete

This section figures out a non-linear cracked hinge model developed through an appro-

priate mechanical approach aimed at simulating the two key crack-bridging mecha-

nisms of steel fibers, as mentioned in the previous chapters, on a notched section of

four-point bending tests. Particularly, the results of the experimental activity carried

out on Steel Fiber-Reinforced Concrete (SFRC) by mixing short and long hooked-end

fibers (completely reported in Chapter 2) were considered for calibrating and validating

the proposed numerical tool.

Section 7.1 of this chapter outlines the basic assumptions of the possible lumped-

plasticity method, above mentioned, for simulating the observed post-cracking be-

havior of SFRC specimens presented in Chapter 2. In Section 7.2 the bridging effects

induced by fibers crossing the fracture surfaces in terms of bond-slip mechanisms

is described. Then, Section 7.3 reports the dowel action resulting in a shear transfer

mechanism of steel fibers crossing cracks. Both models were briefly described while

the complete description can be founded in Chapter 3 and 4. Comparisons between

experimental data and numerical predictions are presented and discussed in Section

7.4. Finally, some conclusions are given in Section 7.5.

7.1 Basic assumptions

The model formulation, outlined in this section, was based on the original idea by

Olesen [2001]. Similar proposals for fracture behavior of both plain and SFRC members

were proposed in literature a.o. by Zhang and Li [2004], Oh et al. [2007], Walter and

Olesen [2008], Park et al. [2010], Buratti et al. [2011].

According to the fictitious crack method [Olesen, 2001], the following stress-strain and

stress-crack opening relationships can be founded in the notched section of Fig. 7.1

σSF RC = E ·ε (7.1)
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Crack Tip Opening

Displacement (CTOD)

P/2 P/2

h
-a

h

Crack Mouth Opening

Displacement (CMOD)

a

b

l

Figure 7.1: Geometrical description of the analyzed four-point bending scheme.

σSF RC =σ [ucr ]+
n f∑

f =0

[
σ f

[
uN ,cr

]
nN , f +τ f

[
uT,cr

]
nT, f

]
(7.2)

being σSF RC the stress of the considered cementitious composite in the notched sec-

tion, E the concrete elastic modulus, ε the elastic strain and σ [ucr ] the stress-crack

opening law of the plain concrete; σ f and τ f mean the bond-slip and dowel actions of

the single considered reinforcement which are related to axial and tangential cracking

displacements, uN ,cr and uT,cr at fiber level, respectively (Fig. 7.2); nN , f and nT, f are

the cosine directors of fiber for its normal and tangential direction, respectively. Finally,

n f represents the number of fibers crossing the analyzed strip in the crack section, con-

sidering for simplicity that each generic fiber crosses the fracture line at its mid-length,

lemb = l f /2.

As a matter of principle Eq. (7.2) is the same one proposed for the interface formulation

in Chapter 3 (to see Eq. 3.2) that was also employed in more general finite element

models in Chapter 6.
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Figure 7.2: Stress distributions and fiber actions during the crack evolution.

The considered cosine directors for each fiber, given in Eq. (7.2), were finally based on
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7.1. Basic assumptions

the following relations

nN , f = cosϑcos$; nT, f = sinϑcos$. (7.3)

being ϑ and $ the polar and the azimuthal angle of the single fiber crossing the crack

surface.

The number of crossing fibers per strip, n f , was evaluated through the proposal out-

lined by Dupont and Vandewalle [2005]

n f =α~N
ρ f

A f
Ai (7.4)

where ρ f is the fiber content, A f and Ai are the cross-sectional area of a single fiber and

the interface area (Ai = b ·hs , being b the base width and hs the height of the analyzed

strip), respectively.

The orientation factor can be estimated by means of the following relationship [Dupont

and Vandewalle, 2005]

α~N =
α~N ,1 · (b − l f )(h − l f )+α~N ,2 ·

[
(b − l f )l f + (h − l f )l f

]+α~N ,3 · l f
2

b ·h
(7.5)

by geometrically averaging the orientation factors α~N ,1, α~N ,2 and α~N ,3, referred to the

zone 1, 2 and 3 as outlined in Fig. 7.3.

3 32l
f
/2

l
f
/2 l

f
/2

12 2

3 32

h

b

l
f
/2

Figure 7.3: The three orientation zones for the concrete beam specimen: b×h× l (base
× height × length) having l ≥ b and l ≥ h.

The stress-crack opening relationship, σ [ucr ], of plain concrete matrix was based on

the fracture-based interface law proposed by Carol et al. [1997] and herein considering
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Chapter 7. Cracked hinge numerical for fiber-reinforced concrete

the case of only tension. Particularly, the interface loading criterion, the flow rule and

the softening (evolution) law were defined as

f (σ,κ) =σ2 −σ2
y ≤ 0 loading criterion

u̇cr = λ̇ ∂ f
∂σ = 2 · λ̇ ·σ plastic flow

σy = ft

(
1− wcr

G I
f

)
evolution law

(7.6)

where σy is the current tensile strength and κ the internal state variable. The incremen-

tal cracking separation, u̇cr , was defined by means of the classical flow rule, being λ̇

the non-negative plastic multiplier. The variation in σy was assumed to be linear, from

its maximum value ft (tensile strength) to zero, based on the work spent-to-fracture

energy ratio, wcr

G I
f

. The incremental work spent for fracture, ẇcr , was defined as follows

ẇcr =σ · u̇cr . (7.7)

Based on these hypothesis, the employed model exhibits the following closed-form

solution under persistent loading conditions [Carol et al., 1997, Stankowski et al., 1993]

σ= ft exp

(
−ucr ft

G I
f

)
. (7.8)

as it can be shown in Fig. 7.4(a). The total crack displacement ucr , at the considered

strip, was given as the difference between the total one minus the elastic part

ucr = utot − s
σSF RC [ucr ]

E
(7.9)

where

utot = 2 ·φ · (y − y0) (7.10)

beingφ the angular deformation, while y and y0 deal with the considered strip position

and the depth of the neutral axis as depicted in Fig. 7.4(b). In Eq. (7.9), s represents the

hinge length.

By solving the Eq. (7.9) for σSF RC and substituting utot = s ·ε∗, where ε∗ figures out the

mean longitudinal strain of the section

ε∗ = 2 ·φ · (y − y0)

s
(7.11)
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the following expression for σSF RC can be obtained

σSF RC = E · (2 ·φ · (y − y0)−ucr [y])

s
(7.12)

Now, by substituting Eqs. (7.2) and (7.8) into Eq. (7.12) the expression of the cracking

relative displacement ucr , at the y level of the considered strip, is reached

ucr [y] =

G I
f ·W

− ft
2·s·exp

(
− 2· ft ·φ·(y−y0)

G I
f

+ s·(σ f +τ f )

E ·G I
f

)
E ·G I

f


ft

+2·φ·(y−y0)+
s · (σ f +τ f )

E · ft
(7.13)

where W [...] represents the well-known Lambert W function (also known as “omega”

function or product logarithm).

Finally, by adopting the above Eq. (7.13) into Eq. (7.8), the following composite stress

σSF RC can be obtained

σSF RC = ft ·exp


−2· ft ·φ·(y−y0)

G I
f

+ s·(σ f +τ f )

E ·G I
f

−

W

− ft
2·s·exp

(
− 2· ft ·φ·(y−y0)

G I
f

+ s·(σ f +τ f )

E ·G I
f

)
E ·G I

f



+ (σ f +τ f ) (7.14)

Gf 
I (fracture energy)

ft  (tensile stregnth)

σ

y0y

2φ

φ φ

ucr

s

φ φ

utot

 2

utot

 2

(a) (b)

Figure 7.4: Cracked hinge: (a) stress-crack opening displacement of plain concrete and
(b) main geometrical assumption under deformation.

Knowing the complete stress distributions in both elastic and post-cracking state the

external force P and/or the subsequent bending moment M can be easily obtaining

by equilibrium conditions between internal and external forces. Particularly the axial

equilibrium was commonly employed for obtaining the position of the neutral axis y0.
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Once this latter was achieved the bending equilibrium can be employed for calculating

the resultant moment.

Then, both Crack-Tip and Mouth Opening Displacements (CTOD and CMOD as shown

on Fig. 7.1) can be easily calculated by evaluating utot of Eq. (7.10) for y = h −a and

y = h, respectively, as follows

C T OD = utot [h −a]

C MOD = utot [h].
(7.15)

7.2 Bond-slip bridging of fibers on concrete cracks

Fracture opening processes in concrete activate bridging effects induced by fibers. The

axial (tensile) stresses in fibers are balanced by bond developing on their lateral surface

embedded in concrete matrix. Thus, a simple equilibrium equation can be written

dσ f [x]

d x
=−4τa[x]

d f
(7.16)

where σ f is the fiber axial tensile stress accounted in the composite model of Eq.

(7.2), τa the local bond stress between fiber and surrounding concrete, and d f the

fiber diameter. This approach is strictly true in case of considering synthetic fibers,

while can be accepted for steel ones when the length lemb results in the condition that∣∣σ f ,max
∣∣ ≤ σy,s , where σ f ,max and σy,s represent the maximum axial stress and the

steel yielding, respectively.

A simplified bilinear shear-slip law was proposed to model the fiber-to-concrete debond-

ing process as follows

τa[x] =


−kE s[x] s[x] ≤ se

−τy,a +kS (s[x]− se ) se < s[x] ≤ su

0 s[x] > su

(7.17)

where s[x] defines the debonded displacement between the fiber and concrete (at the

point of the abscissa x). The positive constants kE and kS represent the elastic and

softening slopes of such bond-slip relationships, respectively; τy,a is the shear bond

strength, while se and su are the elastic and ultimate slips, respectively.

The complete derivation of this numerical model, and its validation against bond-slip

experimental tests, were proposed in a previous work published by the authors, see

Caggiano et al. [2012c], Caggiano and Martinelli [2012] and completely reported in

Chapter 4.
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7.3 Dowel action of fibers crossing the concrete cracks

The dowel mechanism, resulting in a shear transfer action across cracks, represents

an important component on the overall interaction between steel fibers and concrete

matrix. A simple analytical model was developed for this purpose.

The well-known Winkler beam theory was used to describe the relationship of the dowel

force, Vd , and the transversal displacement, ∆. Its analytical solution was defined as

Vd = Es Jsλ
3
f ∆ (7.18)

where Es is the steel elastic modulus and Js the fiber moment of inertia. The Winkler

parameter, λ f , is analytically derived as

λ f = 4

√
kc d f

4Es Js
= 4

√√√√ 16kc

Esπd 3
f

(7.19)

where kc is the foundation stiffness (herein, the surrounding mortar).

The following expression proposed by Soroushian et al. [1987] was employed for the

evaluation of kc ,

kc =
127c1 f (1/2)

c

d (2/3)
f

(7.20)

where c1 mainly defines the amount of the elastic foundation stiffness of the surround-

ing concrete.

Finally, the empirical expression proposed by Dulacska [1972] for RC-structures was

taken as the maximum dowel strength

Vd ,u = kdow d 2
f

√
| fc ||σy,s | (7.21)

being kdow a non-dimensional coefficient whose typical value 1.27 could be assumed

as reference for RC-members [El-Ariss, 2007], d f is the diameter of the fiber, while fc

and σy,s are the strengths of concrete and the steel, respectively.

7.4 Numerical predictions

The composite model outlined in the three above sections were introduced in the

cracked hinge zone with the aim to simulate the 150×150×600 mm3 notched concrete

specimens, tested under four-point bending presented in Chapter 2.
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Figure 7.5: Load-C T ODm numerical predictions against the experimental data on
SFRC L100-type by Caggiano et al. [2012a].
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Figure 7.6: Load-C T ODm numerical predictions against the experimental data on
SFRC L75-type by Caggiano et al. [2012a].

For the purpose of the numerical evaluations, three material types were considered: (1)

plain concrete, (2) steel fiber-reinforced concrete having ρ f = 0.5% and, (3) the same

as (2) but considering ρ f = 1.0%. The geometry and material properties were chosen

according to the tests outlined in experimental campaign given in Chapter 2.

The local bond-slip law was determined through an inverse identification on the

test results obtained on specimens reinforced with only short fibers with ρ f = 1.0%.

Then, such a calibration was used to simulate the behavior observed in all other tests.

The mechanical parameters calibrated and employed in the numerical evaluations

were: ft = 2.08 MPa (tensile strength), E = 31.5 GPa (elastic modulus), s = 75 mm

(hinge length), G I
f = 0.5 N/mm (fracture energy), τy,a = 4.5 MPa (shear bond strength),

kE = 100.0 N /mm3 (elastic stiffness), kS = 0.1 N /mm3 (softening stiffness), kdow = 2.8

(dowel parameter) and c1 = 0.15 (coefficient of beam foundation). The assumed values

for the orientation factors α~N were based on the theoretical proposal given by Dupont
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and Vandewalle [2005] and briefly reported in Section 7.1. Particularly, the values 0.57

and 0.54 were determined for long and short fibers, respectively.
 

LS50 

 

� �

ρ f � 1.0�

ρ f � 0.5�

Numerical predictions

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

CTODm �mm�

v
er

tic
al

lo
ad

�k
N
�

Figure 7.7: Load-C T ODm numerical predictions against the experimental data on
SFRC LS50-type by Caggiano et al. [2012a].
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Figure 7.8: Load-C T ODm numerical predictions against the experimental data on
SFRC S75-type by Caggiano et al. [2012a].

The numerical force-C T ODm curves, against the corresponding experimental results,

are proposed from Fig. 7.5 to 7.9. C T ODm represents the mean of the two opposite

Crack Tip Opening Displacements (C T ODs) registered by the transductor devices of

the experimental campaign (to see Chapter 2). The load-crack opening responses of

SFRC beams emphasize the significant influence of the fiber reinforcement on the

peak strength and the post-peak behavior. Fiber bridging effects on the pre-cracked

concretes were well simulated by the considered numerical approach with the proposed

non-linear separation law for SFRC.

The results of these numerical analyses demonstrate that the model reproduces very

accurately the performance of SFRCs in terms of both peak strength and post-peak

ductility of failure processes under mode I type of fracture when different fiber types
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and contents were considered.

7.5 Closure chapter and final remarks

The four-point bending behavior of notched SFRC beams was numerically investigated

and compared against experimental results on four-point bending tests. Two different

amounts of steel fibers were considered and modeled at a numerical stand point. A

novel stress-crack opening model, based on a hinge-crack approach already available

in the scientific literature, were employed to reproduce and simulate the experimental

results proposed in an other chapter of this thesis. As for the interface formulation,

originally employed for meso-mechanical analyses as proposed in Chapter 6, the model

was founded on the explicit modeling of the interaction between concrete and steel

fibers. The model predictions, compared with the experimental measures, demonstrate

the soundness and capability of the model with the aim to reproduce the mechanical

response of SFRC beam frames in terms of force-C T OD curves.
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Figure 7.9: Load-C T ODm numerical predictions against the experimental data on
SFRC S100-type by Caggiano et al. [2012a].
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8 Final remarks and conclusions

TO BE WRITTEN
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